首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of selective PAF receptor antagonists may provide a novel approach to the treatment of human bronchial asthma. In preclinical animal models of human asthma, PAF receptor antagonists have been found to be efficacious in blocking antigen-induced changes in lung function. However, the majority of these models involve acute inflammatory events and transient changes in lung function and, therefore, their relevance to human asthma is questionable. In a recent study with a primate model of chronic airway inflammation and hyperresponsiveness, we have shown that treatment with a PAF receptor antagonist had no effect on reducing chronic inflammation and hyperresponsiveness. Similarly, recent studies in human asthmatics with PAF receptor antagonists have failed to show efficacy in blocking allergen-induced airway responses or to have any steroid sparing effects in patients with ongoing asthma. Thus, it seems that PAF may not be a key mediator which can be blocked and thereby provide therapy for bronchial asthma.  相似文献   

2.
We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C(4) (LTC(4)) and prostaglandin D(2) (PGD(2)) recovered and quantified in bronchoalveolar lavage (BAL) fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days) failed to reduce the chronic airway inflammation (eosinophilic) and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.  相似文献   

3.

Background

Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes.

Methods

Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening.

Results

Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued.

Conclusions

Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.  相似文献   

4.

Background

Viral bronchiolitis is the leading cause of hospitalization in young infants. It is associated with the development of childhood asthma and contributes to morbidity and mortality in the elderly. Currently no therapies effectively attenuate inflammation during the acute viral infection, or prevent the risk of post-viral asthma. We hypothesized that early treatment of a paramyxoviral bronchiolitis with azithromycin would attenuate acute and chronic airway inflammation.

Methods

Mice were inoculated with parainfluenza type 1, Sendai Virus (SeV), and treated daily with PBS or azithromycin for 7 days post-inoculation. On day 8 and 21 we assessed airway inflammation in lung tissue, and quantified immune cells and inflammatory mediators in bronchoalveolar lavage (BAL).

Results

Compared to treatment with PBS, azithromycin significantly attenuated post-viral weight loss. During the peak of acute inflammation (day 8), azithromycin decreased total leukocyte accumulation in the lung tissue and BAL, with the largest fold-reduction in BAL neutrophils. This decreased inflammation was independent of changes in viral load. Azithromycin significantly attenuated the concentration of BAL inflammatory mediators and enhanced resolution of chronic airway inflammation evident by decreased BAL inflammatory mediators on day 21.

Conclusions

In this mouse model of paramyxoviral bronchiolitis, azithromycin attenuated acute and chronic airway inflammation. These findings demonstrate anti-inflammatory effects of azithromycin that are not related to anti-viral activity. Our findings support the rationale for future prospective randomized clinical trials that will evaluate the effects of macrolides on acute viral bronchiolitis and their long-term consequences.  相似文献   

5.
Allergic asthma is a debilitating disease of the airways characterized by airway hyperresponsiveness, eosinophilic inflammation, goblet cell metaplasia with associated mucus hypersecretion,?and airway wall remodelling events, particularly subepithelial fibrosis and smooth muscle cell hyperplasia. Animal models that accurately mimic these hallmarks of allergic airways disease are critical for studying mechanisms associated with the cellular and structural changes that lead to disease pathogenesis. Aspergillus fumigatus, is a common aeroallergen of human asthmatics. The intratracheal (IT) delivery of A. fumigatus conidia into the airways of sensitized mice has been described as a model of allergic disease. Here, we compared the IT model with a newly developed inhalation (IH) challenge model. The IH model allowed multiple fungal exposures, which resulted in an exacerbation to the allergic asthma phenotype. Increased recruitment of eosinophils and lymphocytes, the hallmark leukocytes of asthma, was noted with the IH model as compared to the IT model in which macrophages and neutrophils were more prominent. Immunoglobulin E (IgE) production was significantly greater after IH challenge, while that of IgG(2a) was higher after IT challenge. Airway wall remodelling was pronounced in IH-treated mice, particularly after multiple allergen challenges. Although the IT model may be appropriate for the examination of the played by innate cells in the acute response to fungus, it fails to consistently reproduce the chronic remodelling hallmarks of allergic asthma. The ability of the IH challenge to mimic these characteristics recommends it as a model suited to study these important events.  相似文献   

6.
In animals with acute airway inflammation followed by repeated exposure to inhaled Ag, inflammation wanes over time and thus limits the study of chronic airway inflammatory diseases such as asthma. We developed a model of airway inflammation and inhalational exposure to investigate regulatory pathways in the respiratory tract. We show that Th1- and Th2-induced airway inflammation followed by repeated exposure to inhaled Ag leads to a state of immunosuppression. Challenge of these animals with a marked population of TCR transgenic effector Th1 or Th2 cells results in a striking inhibition of inflammation and effector Th cells. In Th2 models, airway hyperresponsiveness, mucus, and eosinophilia are reduced. The inhibitory effects observed are Ag nonspecific, can be induced in lymphocyte-deficient mice, and are associated with a population of TGF-beta1-expressing macrophages. Induction of this pathway may offer potent localized treatment of chronic T cell-mediated respiratory illnesses and provide insights into the development of such diseases.  相似文献   

7.
Asthma is characterized by chronic airways inflammation, airway wall remodeling, and airway hyperresponsiveness (AHR). An increase in airway smooth muscle has been proposed to explain a major part of AHR in asthma. We have used unbiased stereological methods to determine whether airway smooth muscle hyperplasia and AHR occurred in sensitized, antigen-challenged Brown Norway (BN) rats. Ovalbumin (OA)-sensitized BN rats chronically exposed to OA aerosol displayed airway inflammation and a modest level of AHR to intravenously administered ACh 24 h after the last antigen challenge. However, these animals did not show an increase in smooth muscle cell (SMC) number in the left main bronchus, suggesting that short-lived inflammatory mechanisms caused the acute AHR. In contrast, 7 days after the last aerosol challenge, there was a modest increase in SMC number, but no AHR to ACh. Addition of FCS to the chronic OA challenge protocol had no effect on the degree of inflammation but resulted in a marked increase in both SMC number and a persistent (7-day) AHR. These results raise the possibility that increases in airway SMC number rather than, or in addition to, chronic inflammation contribute to the persistent AHR detected in this model.  相似文献   

8.
Reactive oxygen species and reactive nitrogen species produced by epithelial and inflammatory cells are key mediators of the chronic airway inflammation of asthma. Detection of 3-nitrotyrosine in the asthmatic lung confirms the presence of increased reactive oxygen and nitrogen species, but the lack of identification of modified proteins has hindered an understanding of the potential mechanistic contributions of nitration/oxidation to airway inflammation. In this study, we applied a proteomic approach, using nitrotyrosine as a marker, to evaluate the oxidation of proteins in the allergen-induced murine model of asthma. Over 30 different proteins were targets of nitration following allergen challenge, including the antioxidant enzyme catalase. Oxidative modification and loss of catalase enzyme function were seen in this model. Subsequent investigation of human bronchoalveolar lavage fluid revealed that catalase activity was reduced in asthma by up to 50% relative to healthy controls. Analysis of catalase isolated from asthmatic airway epithelial cells revealed increased amounts of several protein oxidation markers, including chloro- and nitrotyrosine, linking oxidative modification to the reduced activity in vivo. Parallel in vitro studies using reactive chlorinating species revealed that catalase inactivation is accompanied by the oxidation of a specific cysteine (Cys(377)). Taken together, these studies provide evidence of multiple ongoing and profound oxidative reactions in asthmatic airways, with one early downstream consequence being catalase inactivation. Loss of catalase activity likely amplifies oxidative stress, contributing to the chronic inflammatory state of the asthmatic airway.  相似文献   

9.
10.
Asthma, chronic obstructive pulmonary disorder (COPD), and cystic fibrosis (CF), chronic diseases of the airways, are characterized by symptoms such as inflammation of the lung tissue, mucus hypersecretion, constriction of the airways, and excessive fibrosis of airway tissue. Transforming growth factor (TGF)-beta, a cytokine that affects many different cell processes, has an important role in the lungs of patients with some of these chronic airway diseases, especially with respect to airway remodeling. Eosinophils can be activated by and are a major source of TGF-beta in asthma. The action of TGF-beta also shows associations with other cell types, such as T cells and neutrophils, which are involved in the pathogenesis of asthma. TGF-beta can perpetuate the pathogenesis of COPD and CF, as well, through its induction of inflammation via release from and action on different cells. The intracellular signaling induced by TGF-beta in various cell types has been elucidated and may point to mechanisms of action by TGF-beta on different structural or immune cells in these airway diseases. Some possible treatments, especially that prevent the deleterious airway changes induced by the action of either eosinophils or TGF-beta in asthma, have been investigated. TGF-beta-induced signaling pathways, especially those in different cell types in asthma, COPD, or CF, may provide potential therapeutic targets for the treatment of some of the most devastating airway diseases.  相似文献   

11.
Mycoplasma pneumoniae causes a range of airway and extrapulmonary pathologies in humans. Clinically, M. pneumoniae is associated with acute exacerbations of human asthma and a worsening of experimentally induced asthma in mice. Recently, we demonstrated that Community Acquired Respiratory Distress Syndrome (CARDS) toxin, an ADP-ribosylating and vacuolating toxin synthesized by M. pneumoniae, is sufficient to induce an asthma-like disease in BALB/cJ mice. To test the potential of CARDS toxin to exacerbate preexisting asthma, we examined inflammatory responses to recombinant CARDS toxin in an ovalbumin (OVA) murine model of asthma. Differences in pulmonary inflammatory responses between treatment groups were analyzed by histology, cell differentials and changes in cytokine and chemokine concentrations. Additionally, assessments of airway hyperreactivity were evaluated through direct pulmonary function measurements. Analysis of histology revealed exaggerated cellular inflammation with a strong eosinophilic component in the CARDS toxin-treated group. Heightened T-helper type-2 inflammatory responses were evidenced by increased expression of IL-4, IL-13, CCL17 and CCL22 corresponding with increased airway hyperreactivity in the CARDS toxin-treated mice. These data demonstrate that CARDS toxin can be a causal factor in the worsening of experimental allergic asthma, highlighting the potential importance of CARDS toxin in the etiology and exacerbation of human asthma.  相似文献   

12.
Among the 22 members of the nucleotide binding-domain, leucine rich repeat-containing (NLR) family, less than half have been functionally characterized. Of those that have been well studied, most form caspase-1 activating inflammasomes. NLRP12 is a unique NLR that has been shown to attenuate inflammatory pathways in biochemical assays and mediate the lymph node homing of activated skin dendritic cells in contact hypersensitivity responses. Since the mechanism between these two important observations remains elusive, we further evaluated the contribution of NLRP12 to organ specific adaptive immune responses by focusing on the lung, which, like skin, is exposed to both exogenous and endogenous inflammatory agents. In models of allergic airway inflammation induced by either acute ovalbumin (OVA) exposure or chronic house dust mite (HDM) antigen exposure, Nlrp12(-/-) mice displayed subtle differences in eosinophil and monocyte infiltration into the airways. However, the overall development of allergic airway disease and airway function was not significantly altered by NLRP12 deficiency. Together, the combined data suggest that NLRP12 does not play a vital role in regulating Th2 driven airway inflammation using common model systems that are physiologically relevant to human disease. Thus, the allergic airway inflammation models described here should be appropriate for subsequent studies that seek to decipher the contribution of NLRP12 in mediating the host response to agents associated with asthma exacerbation.  相似文献   

13.
Recent studies suggest that plasminogen activator inhibitor-1 (PAI-1), a major inhibitor of the fibrinolytic system, may promote the development of asthma. To further investigate the significance of PAI-1 in the pathogenesis of asthma and determine the possibility that PAI-1 could be a therapeutic target for asthma, this study was conducted. First, PAI-1 levels in induced sputum (IS) from asthmatic subjects and healthy controls were measured. In asthmatic subjects, IS PAI-1 levels were elevated, compared with that of healthy controls, and were significantly higher in patients with long-duration asthma compared with short-duration asthma. PAI-1 levels were also found to correlate with IS transforming growth factor-β levels. Then, acute and chronic asthma models induced by ovalbumin were established in PAI-1-deficient mice and wild-type mice that received intra-airway administrations of small interfering RNA against PAI-1 (PAI-1-siRNA). We could demonstrate that eosinophilic airway inflammation and airway hyperresponsiveness were reduced in an acute asthma model, and airway remodeling was suppressed in a chronic asthma model in both PAI-1-deficient mice and wild-type mice that received intra-airway administration of PAI-1-siRNA. These results indicate that PAI-1 is strongly involved in the pathogenesis of asthma, and intra-airway administration of PAI-1-siRNA may be able to become a new therapeutic approach for asthma.  相似文献   

14.
Sleep, respiratory physiology, and nocturnal asthma.   总被引:3,自引:0,他引:3  
The nocturnal worsening of asthma is a common feature of this disease that recently has received extensive investigation. Most recent efforts have focused on the role of circadian biorhythms that could promote a nocturnal increase in airway inflammation, leading to a subsequent increase in airflow obstruction and asthma symptoms. However, definitive studies remain lacking. As discussed in this review, there is also substantial evidence that sleep itself may play a direct role in the nocturnal worsening of asthma. Potential mechanisms for such a sleep-related effect could include the supine posture, alterations in sympathetic and parasympathetic "balance," sleep-associated reductions in lung volume, intrapulmonary pooling of blood, and sleep-associated upper airway narrowing, both with and without snoring and obstructive sleep apnea (OSA). These potential contributors to this troublesome phenomenon deserve further consideration when investigating mechanisms of nocturnal asthma.  相似文献   

15.
The morbidity and mortality from asthma in the Western world have increased 75% in the past 20 years. Recent studies have demonstrated that sensitization to cockroach allergens correlates strongly with the increased asthma morbidity for adults and children. We investigated whether dexamethasone administered before or after allergen challenge would inhibit the pulmonary inflammation and airway hyperresponsiveness in a mouse model of asthma induced by a house dust extract with high levels of cockroach allergens. For the prevention experiment, mice were treated with an intraperitoneal injection of dexamethasone 1 h before each pulmonary challenge, and airway hyperresponsiveness was measured 24 h after the last challenge. Mice were killed 48 h after the last challenge. For the reversal study, airway hyperresponsiveness was measured 24 h after the last challenge, and the mice were treated with dexamethasone. Dexamethasone treatment before allergen challenge significantly reduced the pulmonary recruitment of inflammatory cells, myeloperoxidase activity in the lung, airway hyperreactivity, and total serum IgE levels compared with PBS-treated mice. Additionally, dexamethasone treatment could significantly reduce the airway hyperreactivity of an established asthmatic response. These results demonstrate that dexamethasone not only prevents but also halts the asthmatic response induced by house dust containing cockroach allergens. This model exhibits several features of human asthma that may be exploited in the study of pathophysiological mechanisms and potential therapeutic interventions.  相似文献   

16.

Background

miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated.

Methodology/Principal Findings

In order to establish a miRNAs expression profile in lung tissue, mice were sensitized and challenged with ovalbumin mimicking acute, intermediate and chronic human asthma. Levels of lung miRNAs were profiled by microarray and in silico analyses were performed to identify potential mRNA targets and to point out signalling pathways and biological processes regulated by miRNA-dependent mechanisms. Fifty-eight, 66 and 75 miRNAs were found to be significantly modulated at short-, intermediate- and long-term challenge, respectively. Inverse correlation with the expression of potential mRNA targets identified mmu-miR-146b, -223, -29b, -29c, -483, -574-5p, -672 and -690 as the best candidates for an active implication in asthma pathogenesis. A functional validation assay was performed by cotransfecting in human lung fibroblasts (WI26) synthetic miRNAs and engineered expression constructs containing the coding sequence of luciferase upstream of the 3′UTR of various potential mRNA targets. The bioinformatics analysis identified miRNA-linked regulation of several signalling pathways, as matrix metalloproteinases, inflammatory response and TGF-β signalling, and biological processes, including apoptosis and inflammation.

Conclusions/Significance

This study highlights that specific miRNAs are likely to be involved in asthma disease and could represent a valuable resource both for biological makers identification and for unveiling mechanisms underlying the pathogenesis of asthma.  相似文献   

17.
Oxidative and nitrosative events in asthma   总被引:10,自引:0,他引:10  
Asthma affects over 15 million individuals in the United States, with over 1.5 million emergency room visits, 500,000 hospitalizations, and 5500 deaths each year, many of which are children. Airway inflammation is the proximate cause of the recurrent episodes of airflow limitation in asthma. Research applying molecular biology, chemistry, and cell biology to human asthma and model systems of asthma over the last decade has revealed that numerous biologically active proinflammatory mediators lead to increased production of reactive oxygen species (ROS) and the gaseous molecule nitric oxide (NO). Persistently increased ROS and NO in asthma lead to reactive nitrogen species (RNS) formation and subsequent oxidation and nitration of proteins, which may cause alterations in protein function that are biologically relevant to airway injury/inflammation. Eosinophil peroxidase and myeloperoxidase, leukocyte-derived enzymes, amplify oxidative events and are another enzymatic source of NO-derived oxidants and nitrotyrosine formation in asthma. Concomitant with increased generation of oxidative and nitrosative molecules in asthma, loss of protective antioxidant defense, specifically superoxide dismutase (SOD), contributes to the overall toxic environment of the asthmatic airway. This review discusses the rapidly accruing data linking oxidative and nitrosative events as critical participants in the acute and chronic inflammation of asthmatic airways.  相似文献   

18.
Human asthma is a widespread disease associated with chronic inflammation of the airways, leading to loss of quality of life, disability and death. Corticosteroid administration is the mainstream treatment for asthmatic patients. Corticosteroids reduce airway obstruction and improve quality of life, although symptoms persist despite treatment in many patients. Moreover, available therapies failed to reverse the lung pathology present in asthma. Animal models, mostly rats and mice, in which the disease is experimentally induced, have been studied to identify new therapeutic targets for human asthma. Alternative animal models could include horses in which naturally occurring asthma could represent an important step to test therapies, potentially designed around mouse studies, before being translated to human testing. Horses naturally suffer from asthma, which has striking parallels with human asthma. Severe equine asthma (SEA) is characterized by reversible bronchospasms and neutrophil accumulation in the lungs immunologically mediated mainly by Th2. Moreover, the pulmonary remodelling that occurs in SEA closely resembles that of human asthma, making the equine model unique for investigation of tissue repair and new therapies. Cell therapy, consisting on mesenchymal stromal cells (MSCs) and derivatives (conditioned medium and extracellular vesicles), could represent a novel therapeutic contribution for tissue regeneration. Cell therapy may prove advantageous over conventional therapy in that it may repair or regenerate the site of injury and reduce the reaction to allergens, rather than simply modulating the inflammatory process.  相似文献   

19.
Tan YR  Yang T  Liu SP  Xiang Y  Qu F  Liu HJ  Qin XQ 《Peptides》2008,29(1):47-56
Respiratory syncytial virus (RSV) infection causes bronchiolitis in infants and children, which is an important risk factor for the development of chronic asthma. To probe the underlying mechanisms that RSV infection increases the susceptibility of asthma, this present study was designed to establish a RSV persistent infection animal model by cyclophosphamide (CYP) pretreatment that more closely mimic human RSV infection. CYP is an immunosuppressant, which induced deficiency in cellular and humoral immunity. Pulmonary RSV titers, airway function and peptidergic innervation were measured on 7d, 28 d, 42 d and 60 d postinfection. The results showed that during RSV persistent infection, the lungs of RSV-inoculated animals pretreated with CYP showed higher RSV titers and exhibited obvious chronic inflammation. The results also showed that protein gene product 9.5 (PGP9.5), substance P (SP) and calcitonin gene-related peptide (CGRP)-immunoreactive fibers increased and vasoactive intestinal peptide (VIP)-immunoreactive fibers decreased during RSV persistent infection. These results demonstrate that RSV persistent infection induces significant alterations in the peptidergic innervation in the airways, which may be associated with the development of altered airway function.  相似文献   

20.
Environmental tobacco smoke (ETS) can increase asthma symptoms and the frequency of asthma attacks. However, the contribution of ETS to airway remodeling in asthma is at present unknown. In this study, we have used a mouse model of allergen-induced airway remodeling to determine whether the combination of chronic exposure to ETS and chronic exposure to OVA allergen induces greater levels of airway remodeling than exposure to either chronic ETS or chronic OVA allergen alone. Mice exposed to chronic ETS alone did not develop significant eosinophilic airway inflammation, airway remodeling, or increased airway hyperreactivity to methacholine. In contrast, mice exposed to chronic OVA allergen had significantly increased levels of peribronchial fibrosis, increased thickening of the smooth muscle layer, increased mucus, and increased airway hyperreactivity which was significantly enhanced by coexposure to the combination of chronic ETS and chronic OVA allergen. Mice coexposed to chronic ETS and chronic OVA allergen had significantly increased levels of eotaxin-1 expression in airway epithelium which was associated with increased numbers of peribronchial eosinophils, as well as increased numbers of peribronchial cells expressing TGF-beta1. These studies suggest that chronic coexposure to ETS significantly increases levels of allergen-induced airway remodeling (in particular smooth muscle thickness) and airway responsiveness by up-regulating expression of chemokines such as eotaxin-1 in airway epithelium with resultant recruitment of cells expressing TGF-beta1 to the airway and enhanced airway remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号