首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
邱并生 《微生物学通报》2012,39(12):1859-1860
碱性蛋白酶在洗涤剂、制革、丝绸、饲料、医药、食品、环保等领域被广泛应用,具有重要的工业和经济价值。在筛选新型蛋白酶产酶菌株方面,近年来已报道了具有较高pH适应性的碱性蛋白酶,碱性弹性蛋白酶,水解多种底物的碱性蛋白酶,具有耐热、耐表面活性剂、耐氧化剂等特  相似文献   

2.
3.
嗜碱性的短小芽孢杆菌R115(Alkaliphilic Bacillus pumilus)经0.4mg/ml亚硝基胍和0.4μg/ml利福平处理,获得一株具有高产稳产碱性蛋白酶的变异株(B45),产酶活力由2803μ/ml提高到6000u/ml(28℃测定),该诱变株的最适产酶条件为起始pH10.5-11.0,温度30—35℃,培养时间52—54b。0.4-0.6%K2HPO4.可增加酶的产量。  相似文献   

4.
为了对产碱性蛋白酶的地衣芽孢杆菌D-1的培养条件进行优化,利用10 L发酵罐,采用正交设计19(34)试验,对培养温度、pH值、搅拌转速、通气量4条件进行优化,得到地衣芽孢杆菌D-1发酵产碱性蛋白酶的最优培养条件为:培养温度37.0℃,pH值7.5,通气量4L/min,搅拌转速300r/min.利用最优条件组合进行验证...  相似文献   

5.
6.
7.
8.
9.
为了筛选碱性蛋白酶产生菌并探讨其对蛋白质饲料的发酵效果,以肉粉厂表层土壤为菌株分离源,利用脱脂牛奶培养基分离和纯化蛋白酶产生菌,通过形态特征、生理生化和16S rRNA基因序列分析确定菌株的分类地位,并采用L9(33)正交设计研究筛选出的优势菌种的接种量(3%、6%和12%)、种子液培养时间(12 h、24h和48 h...  相似文献   

10.
地衣芽孢杆菌(Bacillus licheniformis)B.L JF-1d三级发酵的发酵液经离心去菌体,(NH4)2SO4分段盐析,透析后进行Sephadex G-100柱层析得粗酶制剂。比活力从1878U/mg提高到6795U/mg,酶活力回收率为35.3%。该酶水解酷蛋白的最适反应温度为55℃,最适pH为10.5,具有较高的热稳定性,对SDS有较强的耐受性。  相似文献   

11.
Alkaline protease production by a newly isolated Bacillus species from laundry soil was studied for detergent biocompatibility. From its morphological and nucleotide sequence (about 1.5 kb) of its 16S rDNA it was identified as Bacillus species with similarity to Bacillus species Y (Gen Bank entry: ABO 55095), and close homology with Bacillus cohnii YN-2000 (Gen Bank entry: ABO23412). Partial purification of the enzyme by ammonium sulfate (50–70% saturation) yielded 8-fold purity. Casein zymography and Sodium dodecylsulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) of the partially purified enzyme revealed two isozymes of molecular sizes approximately 66 kDa and 18 kDa, respectively. The enzyme was most active at pH 12 and 50°C. At pH 12 the enzyme was stable for 5 h and retained 60% activity. The enzyme retained 44% activity at 50°C up to 2 h. The protease showed good hydrolysis specificity with different substrates tested. The presence of Mn2+, Co2+ and ethylenediaminetetracetic acid (EDTA) showed profound increase in protease activity. The protease of Bacillus species Y showed excellent stability and compatibility with three locally available detergents (Kite, Tide and Aerial) up to 3 h retaining almost 70–80% activity and 10–20% activity at room temperature (30°C) and 50°C, respectively, indicating the potential role of this enzyme for detergent application.  相似文献   

12.
    
A thermostable alkaline protease produced from Bacillus sp. JB 99 exhibited significant keratinolytic and dehairing activity. The enzyme was purified by ammonium sulphate precipitation followed by CM-cellulose and Sephadex G-100 chromatography and resulted in 13.6 fold purification with 23.8% of recovery. The specific activity of purified enzyme was 2989.6 U mg−l. Purified protease had a molecular weight of 29 kDa and appeared as a single band. Gelatin zymogram analysis also revealed a clear hydrolytic zone, which corresponded to the band obtained with SDS-PAGE. The optimum pH and temperature for the keratinolytic activity was pH 11.0 and 70 °C respectively and half life of protease was 70 °C for 4 h. N-terminal amino acid sequence of purified enzyme exhibited extensive homology with other thermostable alkaline proteases and inhibition by PMSF indicated serine type of protease. The Km and Vmax of protease for keratin substrate were 3.8 ± 0.5 mg ml−1 and 15.1 ± 1.6 ??m min−1 mg−1 and casein were 3.3 ± 0.4 mg ml−l and 15.6 ± 0.9 ??m min−1 mg−1 respectively. The enzyme efficiently dehaired buffalo and goat hide without damaging the collagen layer, which makes it a potential candidate for application in leather industry to avoid pollution problem associated with the use of chemicals in the industry. The enzyme also degraded chicken feathers in presence of reducing agent which can help poultry industry in management of keratin-rich waste and obtaining value added products.  相似文献   

13.
The objective of this work was to isolate a microorganism producing alkaline protease that can be used as an ecofriendly alternative to chemicals in dehairing process of leather manufacture. Alkaline protease producing bacterium Vibrio metschnikovii NG155 was isolated from soil samples of leather industry. The protease was highly effective in dehairing of goat skin, completely eliminating the use of lime and sulfide. Histological studies of the skin after dehairing showed that the enzyme did not damage the collagen layer and brought good fiber opening. Absence of collagenase activity was confirmed by reacting pure collagen with the enzyme and analyzing it on SDS PAGE, which showed no degradation of collagen. The enzyme was stable in a wide range of pH (7–11) and temperature (10–50 °C), which makes it suitable for industrial application.  相似文献   

14.
Bacillus circulans MTCC 7906, an extracellular alkaline protease producer was genetically characterized. B. circulans genomic DNA was isolated, oligonucleotide primers specific to alkaline protease gene of B. circulans were designed and its PCR amplification was done. The purified PCR product and pTrcHisA vector were subjected to restriction digestion with NcoI and HindIII and transformed into Escherichia coli DH5-α competent cells. The recombinant expression of alkaline protease gene studied by inducible expression and analysis by SDS-PAGE, established that the alkaline protease protein had an estimated molecular size of 46 kDa. Gene sequencing of the insert from selected recombinant clone showed it to be a 1329 bp gene encoding a protein of 442 amino acids. The sequence was blasted and aligned with known alkaline protease genes for comparison with their nucleotide and amino acid sequences. This identified major matches with three closely related subsp. of B. subtilis (B. subtilis subsp. subtilis strain 168, B. subtilis BSn5 and B. subtilis subsp. spizizenii strain W23). The insert also showed a number of substitutions (mutations) with other sp. of Bacillus which established that alkaline protease of B. circulans MTCC 7906 is a novel gene. The phylogenetic analysis of alkaline protease gene and its predicted amino acid sequences also validated that alkaline protease gene is a novel gene and the same has been accessioned in GenBank with accession number JN645176.1.  相似文献   

15.
Thermostable alkaline α-amylase producing bacterium Bacillus cereus strain isolated from Cuddalore harbour waters grew maximally in both shake flask and fermentor, and produced α-amylase at 35°C, pH 7.5 and 1.0% of substrate concentrations. α-Amylase activity was maximum at 65°C, pH 8.0, 89% of its activity was sustained even at pH 11.0. Added with MnCl2, α-amylase activity showed 4% increase but it was inhibited by EDTA. The molecular weight of the purified α-amylase is 42 kDa.  相似文献   

16.

Background

The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.

Results

Whole genome nucleotide and proteome comparison of the 93 extant Bacillus phages revealed 12 distinct clusters, 28 subclusters and 14 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member of the group. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,922 protein families (phams) of which only 951 (19%) had a predicted function. In addition, 3,058 (62%) of phams were orphams (phams containing a gene product from a single phage). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.

Conclusions

This analysis provides a basis for understanding and characterizing Bacillus phages and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.  相似文献   

17.
Agro-industrial residues and cow dung were used as the substrate for the production of alkaline protease by Bacillus cereus strain AT. The bacterial strain Bacillus cereus strain AT produced a high level of protease using cow dung substrate (4813 ± 62 U g−1). Physiological fermentation factors such as the incubation time (72 h), the pH (9), the moisture content (120%), and the inoculum level (6%) played a vital role in the enzyme bioprocess. The enzyme production improved with the supplementation of maltose and yeast extract as carbon and nitrogen sources, respectively. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and zymogram analysis of the purified protease indicated an estimated molecular mass of 46 kDa. The protease enzyme was stable over a temperature range of 40–50 °C and pH 6–9, with maximum activity at 50 °C and pH 8. Among the divalent ions tested, Ca2+, Na+ and Mg2+ showed activities of 107 ± 0.7%, 103.5 ± 1.3%, and 104.6 ± 0.9, respectively. The enzyme showed stability in the presence of surfactants such as sodium dodecyl sulfate and on various commercially available detergents. The crude enzyme effectively de-haired goat hides within 18 h of incubation at 30 °C. The enzymatic properties of this protease suggest its suitable application as an additive in detergent formulation and also in leather processing. Based on the laboratory results, the use of cow dung for producing and extracting enzyme is not cumbersome and is easy to scale up. Considering its cheap cost and availability, cow dung is an ideal substrate for enzyme bioprocess in an industrial point of view.  相似文献   

18.
    

Background

The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.

Results

Whole genome nucleotide and proteome comparison of the 83 extant, fully sequenced Bacillus phages revealed 10 distinct clusters, 24 subclusters and 15 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,442 protein families (phams) of which only 894 (20%) had a predicted function. In addition, 2,583 (58%) of phams were orphams (phams containing a single member). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.

Conclusions

This analysis provides a basis for understanding and characterizing Bacillus and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.  相似文献   

19.
Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla), were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号