首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple procedure for preparation of an affinity resin with 3''-amino thymidine linked to the carboxyl residues on 6-amino-hexanoic agarose is described. We have used this column for a rapid and simple purification of the thymidine kinase encoded by the herpes simplex virus type 1 genome. This resin has two major advantages over the most widely use used resin made with thymidine-p-nitrophenyl phosphate: first it is easily obtainable, and second, it is not subject to destruction by phosphodiesterases. The two resins are very similar in behavior and the resin made with amino thymidine has allowed us to prepare large quantities of highly purified HSV TK for crystallization studies.  相似文献   

3.
We have determined the complete nucleotide sequence of the thymidine kinase gene of herpes simplex virus (HSV) type 2 strain 333. The sequence of the thymidine kinase gene exhibits an open translational reading frame of 1,128 nucleotides encoding a protein of 376 amino acids. The DNA sequence was compared with that of the HSV type 1 thymidine kinase gene from strain MP (S. L. McKnight, Nucleic Acids Res. 8:5949-5964, 1980) and from strain CL 101 (M. J. Wagner, J. A. Sharp, and W. C. Summers, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445, 1981) to assess the extent of intra- and intertypic variation for one viral gene. The nucleotides encoding the structural gene varied 1.7% between the two HSV type 1 strains and 19% between HSV type 1 and HSV type 2, which translated to differences in the amino acid sequence of the two proteins of 1.9 and 27%, respectively. The DNA encoding the 5' regulatory sequences appeared to be more conserved than the DNA coding for the structural gene, and the DNA at the 3' end of the gene was the least homologous.  相似文献   

4.
Lu Q  Hwang YT  Hwang CB 《Journal of virology》2002,76(11):5822-5828
To examine whether the exonuclease activity intrinsic to the polymerase (Pol) of herpes simplex virus type 1 can influence the mutational spectra, we applied the denaturing gradient gel electrophoresis (DGGE) system combined with sequencing to characterize thymidine kinase mutants isolated from both the wild-type virus and a mutant deficient in exonuclease activity, Y7. Wild-type viruses produced predominantly frameshift mutations (67%), whereas Y7 replicated a significantly lower proportion of frameshifts (21%; P < 0.005). Furthermore, the majority of substitutions were transitional changes in both groups, although they distributed differently. The implications of these findings are discussed.  相似文献   

5.
6.
The herpes simplex 1 virus thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and for imaging intracellular molecular events and cell trafficking in living subjects. Two in vitro methods are available to assay gene expression of HSV1-tk or HSV1-sr39tk in cells or tissues. One method determines the level of HSV1-TK or HSV1-sr39TK enzyme activity in cell or tissue lysates by measuring the amount of the radiolabeled substrates that have been phosphorylated by these enzymes in a fixed amount of cell lysate protein after a fixed incubation time. The other method, called the 'cell-uptake assay', takes into account the natural uptake and efflux characteristics of the radiolabeled substrate by specific cells, in addition to the level of HSV1-TK or HSV1-sr39TK activity. Both of these assays can be used to validate molecular models in cultured cells, prior to studying them in living research subjects. Each of these assays can be completed in one day.  相似文献   

7.
8.
A mouse cell line (LP1-1) was established from the murine L cells deficient in thymidine kinase (L-M(TK )) by prolonged selective culture on the hypoxanthine-aminopterine-thymidine (HAT) medium following transfection with the thymidine kinase gene of herpes simplex virus type-I (HSVTK). Southern blot analysis has shown that the viral TK gene was integrated into one of the chromosomal loci by a single copy. From this established cell line, the 5-bromo-2-deoxyuridine (BrdU) resistant revertant was brought out at a frequency of 1×10–6 and from these BrdU resistant revertants (LP1BU), one out of 1×105 cells could return to the HAT-resistant phenotype. The established LP1-1 cell line showed a typical biphasic nature of DNA synthesis as determined by the 3H-thymidine incorporation test. The activity of thymidine kinase was shown to be equivalent to that of the DNA polymerase- when the whole nuclear fraction or the nuclear matrix were used for examination. These results indicate that the transfected viral TK gene can be expressed under the normal cell-cycle regulation and its gene product can act as a component of the multienzyme complex which is responsible for DNA replication.  相似文献   

9.
The herpes simplex virus type 2 thymidine kinase gene has been mapped to a position colinear with the herpes simplex virus type 1 thymidine kinase gene and cloned within a 4.0-kilobase fragment in pBR 322.  相似文献   

10.
A recombinant cell line (NIH3T3:pLtkSN) was made by infecting parental cells (NIH3T3) with a recombinant retrovirus (pLtkSN) encoding herpes simplex virus thymidine kinase (HSVtk) gene. The cells expressing HSVtk (NIH3T3:pLtkSN) grew 2.3 times more than the parental cells (NIH3T3) in Dulbecco's Modified Eagles Media containing 10% (v/v) horse serum. The NIH3T3:pLtkSN cells also showed a significant enhancement in the maximal cell concentration and the specific growth rate even at 2.5% serum concentration. The specific O2 uptake rate of NIH3T3 was 2.1 times greater than that of NIH3T3:pLtkSN. Under both O2-limited and O2-unlimited conditions, it appears that HSVtk plays an important role in enhancing the growth characteristics of animal cells.  相似文献   

11.
Thymidine kinase from herpes simplex virus type 1 (ATP:thymidine 5'-phosphotransferase; EC 2.7.1.21) has been purified from an overexpression system and crystallized against ammonium sulfate by using the hanging-drop technique. The tetragonal crystals are of space group P4122 or P4322, and have unit cell dimensions a = b = 84 A, c = 180 A.  相似文献   

12.
INTRODUCTI0NHepatocellularcarcinoma(HCC)is0ne0fthem0stc0mm0nhumanmalignancies,causinganestimatedl,250,OOOdeatht0llperyearworldwide[1].Thep0orprognosisencounteredintreatment0fsuchcarcinomaismainlycausedbylatediagn0sisandinsufficiency0feffectivestrategies,especiallyforadvanced-stagedpatients.However,recentknowledge0fpathogenesisofHCCatm0lecularlevelprovidesanalternativeappr0achwhenc0nsideringgenetherapyastreatmelltf0rHCC.Am0ngthevari0usgenetherapystrategiesincancer)itwaJsrep0rtedthatth…  相似文献   

13.
A technique for selecting herpes simplex viruses expressing the viral thymidine kinase (TK+) from a population of predominantly TK- viruses was developed. This was accomplished by infecting TK- cells and incubating the cultures under a liquid overlay medium containing methotrexate. Since the TK- cells survive in this medium for only a limited period of time, it was necessary to add fresh uninfected TK- cells 48 h after infection. The technique allowed the detection and quantitation of the TK+ virus fraction in mixtures of TK+ and TK- viruses where the TK+ fraction was present in frequencies as low as 10(-5). It was also used to estimate reversion frequencies and to obtain and analyze TK+ revertants from TK- mutant strains of herpes simplex virus type 1.  相似文献   

14.
We have reported previously that the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) fused with green fluorescent protein (GFP) is localized in the nucleus of HSV-1 TK-GFP gene-transfected cells (Degrève et al. (1998) J. Virol. 72, 9535-9543). Deletion of the N-terminal 34 amino acids or selective mutation of the nonapeptide (25)RRTALRPRR(33), located in the N-terminal region of HSV-1 TK, resulted in the loss of the specific nuclear localization of HSV-1 TK. Utilizing information on the crystallographic structure of HSV-1 TK, we have now identified three additional putative nuclear localization signals and evaluated their potential role in the nuclear trafficking of HSV-1 TK by site-directed mutagenesis. We found that the sites containing the amino acids R236-R237 and K317-R318 are absolutely required for specific nuclear targeting of HSV-1 TK. The K317-R318 region, located at the interface between the two monomers in the dimeric HSV-1 TK structure, could act as a nuclear localization signal for monomeric HSV-1 TK. Alternatively, crystallographic data indicate that R318 might be essential for the formation of the TK dimer, and therefore it is required if HSV-1 TK is transported as a dimer.  相似文献   

15.
A series of carboxamide derivatives of 5'-amino-2',5'-dideoxy-5-ethyluridine has been prepared as inhibitors of HSV-TK (herpes simplex virus thymidine kinase). The most potent compounds were derived from xanthene, thioxanthene and dihydroanthracene carboxylic acids. The lead compounds show subnanomolar IC(50) values against HSV TKs.  相似文献   

16.
17.
When thymidine kinase-deficient mouse cells "transformed" by in activated herpes simplex virus and expressing the viral thymidine kinase (TK) are grown in nonselective medium, there is an exponential decay in the proportion of cells that continue to express the viral enzyme. However, the viral TK can be reactivated at a frequency of approximately 1 cell in 10(6) in every population that has lost TK activity. When cells in which the viral TK has been reactivated are grown in nonselective medium, a decay in the expression of the viral enzyme occurs again at the same rate as in the initial transformed population. Studies on the reactivation of viral TK indicate that reappearance of the enzyme is not induced by the selective medium (HAT) used to detect cells in which the enzyme has reappeared. Furthermore, treatments known to induce latent viruses in other systems--eg, exposure of the cells to mutagens or cell fusion--do not affect the frequency with which viral TK is reactivated.  相似文献   

18.
Biochemical transformation of Ltk- cells with the herpes simplex virus thymidine kinase (tk) gene resulted in numerous TK+ colonies that survived selection in hypoxanthine-aminopterin-thymidine medium. Many of these TK+ cell lines switched phenotypes and reverted to the TK- state. In this report, we describe the biological and biochemical characteristics of three TK- revertant lines. One (K1B5) transiently expressed TK in the presence of bromodeoxyuridine, which selects for the TK- phenotype. Another TK- sibling (K1B6n) expressed TK only after removal from bromodeoxyuridine-containing medium. The last variant (K1B6me) lost the ability to switch to the TK+ phenotype, although it maintained the herpes simplex virus sequences coding for TK. Loss of the ability of K1B6me cells to express TK was correlated with extensive methylation of the sequence recognized by the restriction endonuclease HpaII (pCpCpGpG). After these cells were treated with 5-azacytidine, they regained the ability to clone in hypoxanthine-aminopterin-thymidine medium and reexpressed virus tk mRNA and enzyme. In addition, the HpaII sites that were previously shown to be refractile to enzyme digestion were converted to a sensitive state, demonstrating that they were no longer methylated.  相似文献   

19.
The herpes simplex virus thymidine kinase gene has been cloned into a chimeric yeast plasmid cloning vehicle and transformed into appropriate yeast strains. Plasmids carrying the herpes simplex virus thymidine kinase gene can be propagated as autonomously replicating plasmids, but no RNA specific to the thymidine kinase coding sequence was detected.  相似文献   

20.
Herpes simplex virus type 1 (HSV 1) thymidine kinase (TK) exhibits an extensive substrate diversity for nucleobases and sugar moieties, in contrast to other TKs. This substrate diversity is the crucial molecular basis of selective antiviral and suicide gene therapy. The mechanisms of substrate binding of HSV 1 TK were studied by means of site-directed mutagenesis combined with isothermal calorimetric measurements and guided by theoretical calculations and sequence comparison. The results show the link between the exceptionally broad substrate diversity of HSV 1 TK and the presence of structural features such as the residue triad His-58/Met-128/Tyr-172. The mutation of Met-128 into a Phe and the double mutant M128F/Y172F result in mutants that have lost their activity. However, by exchanging His to form the triple mutant H58L/M128F/Y172F, the enzyme regains activity. Strikingly, this triple mutant becomes resistant toward acyclovir. Furthermore, we give evidence for the importance of Glu-225 of the flexible LID region for the catalytic reaction. The data presented give new insights to understand mechanisms ruling substrate diversity and thus are crucial for both the development of new antiviral drugs and engineering of mutant TKs apt to accept novel substrate analogs for gene therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号