首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyomavirus large T antigen binds to multiple 5′-G(A/G)GGC-3′ pentanucleotide sequences in sites 1/2, A, B, and C within and adjacent to the origin of viral DNA replication on the polyomavirus genome. We asked whether the binding of large T antigen to one of these sites could influence binding to other sites. We discovered that binding to origin DNA is substantially stronger at pH 6 to 7 than at pH 7.4 to 7.8, a range often used in DNA binding assays. Large T antigen-DNA complexes formed at pH 6 to 7 were stable, but a fraction of these complexes dissociated at pH 7.6 and above upon dilution or during electrophoresis. Increased binding at low pH is therefore due at least in part to increased stability of protein-DNA complexes, and binding at higher pH values is reversible. Binding to fragments of origin DNA in which one or more sites were deleted or inactivated by point mutations was measured by nitrocellulose filter binding and DNase I footprinting. The results showed that large T antigen binds cooperatively to its four binding sites in viral DNA, suggesting that the binding of this protein to one of these sites stabilizes its binding to other sites via protein-protein contacts. Sites A, B, and C may therefore augment DNA replication by facilitating the binding of large T antigen to site 1/2 at the replication origin. ATP stabilized large T antigen-DNA complexes against dissociation in the presence, but not the absence, of site 1/2, and ATP specifically enhanced protection against DNase I digestion in the central 10 to 12 bp of site 1/2, at which hexamers are believed to form and begin unwinding DNA. We propose that large T antigen molecules bound to these multiple sites on origin DNA interact with each other to form a compact protein-DNA complex and, furthermore, that ATP stimulates their assembly into hexamers at site 1/2 by a “handover” mechanism mediated by these protein-protein contacts.  相似文献   

2.
Production of gutted, or helper-dependent, adenovirus vectors by current methods is inefficient. Typically, a plasmid form of the gutted genome is transfected with helper viral DNA into 293 cells; the resulting lysate is serially passaged to increase the titer of gutted virions. Inefficient production of gutted virus particles after cotransfection is likely due to suboptimal association of replication factors with the abnormal origins found in these plasmid substrates. To test this hypothesis, we explored whether gutted virus production would be facilitated by transfection into cells expressing various viral replication factors. We observed that C7 cells, coexpressing adenoviral DNA polymerase and preterminal protein, converted plasmid DNA into replicating virus approximately 50 times more efficiently than did 293 cells. This property of C7 cells can be used to greatly increase the efficiency of gutted virus production after cotransfection of gutted and helper viral DNA. These cells should also be useful for generation of recombinant adenovirus from any plasmid-based precursor.  相似文献   

3.
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.  相似文献   

4.
Nuclear membrane fractions were prepared by two procedures from KB cells pulse labeled with [(3)H]thymidine for 5 min late after infection with adenovirus 2: (i) the M-band technique, which yields a sharp peak containing most of the newly synthesized viral DNA, and (ii) the discontinuous sucrose gradient method, which yields three membrane fractions, one which bands at the interface between sucrose layers at density 1.18 and 1.20 g/ml and contains most of the newly synthesized viral DNA. Studies using cycloheximide to inhibit protein synthesis showed that proteins whose synthesis begins early after infection and occurs in the absence of viral DNA replication are required for viral DNA synthesis late after infection. To study the nature of these proteins, nuclear membrane fractions were isolated from cells labeled with [(3)H]leucine from 6 to 24 h postinfection in the presence of arabinosyl cytosine to block viral DNA replication, and were analyzed by electrophoresis in sodium dodecyl sulfate polyacrylamide gels. Two proteins of molecular weights 75,000 and 45,000 were the major labeled polypeptides in the nuclear membrane fractions prepared from infected cells both by the M-band and the discontinuous sucrose gradient methods. These two proteins were not found in nuclear membrane fractions from uninfected cells. It is suggested that the 75,000 and 45,000 proteins may be early viral gene products that may play a role in the viral DNA replication.  相似文献   

5.
6.
The human cytomegalovirus UL34 gene encodes a sequence-specific DNA binding protein that downregulates expression of the viral immune evasion gene US3. Analysis of the viral genome identified 14 potential UL34 binding sites. Using mobility shift experiments, UL34 bound to all predicted sites that were assayed (7 of 14). Furthermore, the UL34 binding site present within the regulatory region of the US9 gene downregulates expression in a manner similar to that seen for the US3 gene.  相似文献   

7.
To investigate further the contribution of the adenovirus type 5 (Ad5) E1B 55-kDa protein to genome replication, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected with Ad5 or the E1B 55-kDa-null mutant Hr6. Unexpectedly, all cell types were observed to contain a significantly higher concentration of entering Hr6 than of Ad5 DNA, as did an infectious unit of Hr6. However, the great majority of the Hr6 genomes were degraded soon after entry. As this unusual phenotype cannot be ascribed to the Hr6 E1B frameshift mutation (J. S. Chahal and S. J. Flint, J. Virol. 86:3064–3072, 2012), the sequences of the Ad5 and Hr6 genomes were compared by using high-throughput sequencing. Seven previously unrecognized mutations were identified in the Hr6 genome, two of which result in substitutions in virion proteins, G315V in the preterminal protein (preTP) and A406V in fiber protein IV. Previous observations and the visualization by immunofluorescence of greater numbers of viral genomes entering the cytosol of Hr6-infected cells than of Ad5-infected cells indicated that the fiber mutation could not be responsible for the low-infectivity phenotype of Hr6. However, comparison of the forms of terminal protein present in purified virus particles indicated that the production of mature terminal protein from a processing intermediate is impaired in Hr6 particles. We therefore propose that complete processing of preTP within virus particles is necessary for the ability of viral genomes to become localized at appropriate sites and persist in infected cells.  相似文献   

8.
9.
A basic question in adeno-associated virus (AAV) biology has been whether adenovirus (Ad) infection provided any function which directly promoted replication of AAV DNA. Previously in vitro assays for AAV DNA replication, using linear duplex AAV DNA as the template, uninfected or Ad-infected HeLa cell extracts, and exogenous AAV Rep protein, demonstrated that Ad infection provides a direct helper effect for AAV DNA replication. It was shown that the nature of this helper effect was to increase the processivity of AAV DNA replication. Left unanswered was the question of whether this effect was the result of cellular factors whose activity was enhanced by Ad infection or was the result of direct participation of Ad proteins in AAV DNA replication. In this report, we show that in the in vitro assay, enhancement of processivity occurs with the addition of either the Ad DNA-binding protein (Ad-DBP) or the human single-stranded DNA-binding protein (replication protein A [RPA]). Clearly Ad-DBP is present after Ad infection but not before, whereas the cellular level of RPA is not apparently affected by Ad infection. However, we have not measured possible modifications of RPA which might occur after Ad infection and affect AAV DNA replication. When the substrate for replication was an AAV genome inserted into a plasmid vector, RPA was not an effective substitute for Ad-DBP. Extracts supplemented with Ad-DBP preferentially replicated AAV sequences rather than adjacent vector sequences; in contrast, extracts supplemented with RPA preferentially replicated vector sequences.  相似文献   

10.
Hepatitis C virus (HCV) is a single-stranded RNA virus that replicates on endoplasmic reticulum-derived membranes. HCV particle assembly is dependent on the association of core protein with cellular lipid droplets (LDs). However, it remains uncertain whether HCV assembly occurs at the LD membrane itself or at closely associated ER membranes. Furthermore, it is not known how the HCV replication complex and progeny genomes physically associate with the presumed sites of virion assembly at or near LDs. Using an unbiased proteomic strategy, we have found that Rab18 interacts with the HCV nonstructural protein NS5A. Rab18 associates with LDs and is believed to promote physical interaction between LDs and ER membranes. Active (GTP-bound) forms of Rab18 bind more strongly to NS5A than a constitutively GDP-bound mutant. NS5A colocalizes with Rab18-positive LDs in HCV-infected cells, and Rab18 appears to promote the physical association of NS5A and other replicase components with LDs. Modulation of Rab18 affects genome replication and possibly also the production of infectious virions. Our results support a model in which specific interactions between viral and cellular proteins may promote the physical interaction between membranous HCV replication foci and lipid droplets.  相似文献   

11.
Factor H (FH) regulates the activation of C3b in the alternative complement pathway, both in serum and at host cell surfaces. It is composed of 20 short complement regulator (SCR) domains. The Y402H polymorphism in FH is a risk factor for age-related macular degeneration. C-reactive protein (CRP) is an acute phase protein that binds Ca2+. We established the FH-CRP interaction using improved analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and synchrotron x-ray scattering methods. Physiological FH and CRP concentrations were used in 137 mm NaCl and 2 mm Ca2+, in which the occurrence of denatured CRP was avoided. In solution, AUC revealed FH-CRP binding. The FH-CRP interaction inhibited the formation of higher FH oligomers, indicating that CRP blocked FH dimerization sites at both SCR-6/8 and SCR-16/20. SPR confirmed the FH-CRP interaction and its NaCl concentration dependence upon using either immobilized FH or CRP. The SCR-1/5 fragment of FH did not bind to CRP. In order of increasing affinity, SCR-16/20, SCR-6/8 (His-402), and SCR-6/8 (Tyr-402) fragments bound to CRP. X-ray scattering showed that FH became more compact when binding to CRP, which is consistent with CRP binding at two different FH sites. We concluded that FH and CRP bind at elevated acute phase concentrations of CRP in physiological buffer. The SCR-16/20 site is novel and indicates the importance of the FH-CRP interaction for both age-related macular degeneration and atypical hemolytic uremic syndrome.  相似文献   

12.
13.
14.
Replication of plus-stranded RNA viruses is greatly affected by numerous host-coded proteins acting either as susceptibility or resistance factors. Previous genome-wide screens and global proteomics approaches with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of cyclophilins, which are a large family of host prolyl isomerases, in TBSV replication. In this paper, we identified those members of the large cyclophilin family that interacted with the viral replication proteins and inhibited TBSV replication. Further characterization of the most effective cyclophilin, the Cyp40-like Cpr7p, revealed that it strongly inhibits many steps during TBSV replication in a cell-free replication assay. These steps include viral RNA recruitment inhibited via binding of Cpr7p to the RNA-binding region of the viral replication protein; the assembly of the viral replicase complex and viral RNA synthesis. Since the TPR (tetratricopeptide repeats) domain, but not the catalytic domain of Cpr7p is needed for the inhibitory effect on TBSV replication, it seems that the chaperone activity of Cpr7p provides the negative regulatory function. We also show that three Cyp40-like proteins from plants can inhibit TBSV replication in vitro and Cpr7p is also effective against Nodamura virus, an insect pathogen. Overall, the current work revealed a role for Cyp40-like proteins and their TPR domains as regulators of RNA virus replication.  相似文献   

15.
Adenovirus (Ad) precursor to the terminal protein (pTP) plays an essential roles in the viral DNA replication. Ad pTP serves as a primer for the synthesis of a new DNA strand during the initiation step of replication. In addition, Ad pTP forms organized spherical replication foci on the nuclear matrix (NM) and anchors the viral genome to the NM. Here we identified the interferon inducible gene product 1-8D (Inid) as a pTP binding protein by using a two-hybrid screen of a HeLa cDNA library. Of the clones obtained in this assay, nine were identical to the Inid, a 13-kDa polypeptide that shares homology with genes 1-8U and Leu-13/9-27, most of which have little known functions. The entire open reading frame (ORF) of Inid was cloned into the tetracycline inducible expression vector in order to determine the biological functions related with adenoviral infection. When Inid was introduced to the cells along with adenoviruses, fifty to sixty percent of Ad-infected cells expressing Inid had rounded morphology, which was suggestive of apoptosis. Results from the terminal deoxynucleotidyl transferase (TdT) and DNA fragmentation assays confirmed that Inid induces apoptosis in Ad-infected or in uninfected cells. The Inid binding to pTP may target the cell for apoptotic destruction as a host defense mechanism against the viral infection.  相似文献   

16.
Adenovirus infection activates cellular DNA damage response and repair pathways. Viral proteins that are synthesized before viral DNA replication prevent recognition of viral genomes as a substrate for DNA repair by targeting members of the sensor complex composed of Mre11/Rad50/NBS1 for degradation and relocalization, as well as targeting the effector protein DNA ligase IV. Despite inactivation of these cellular sensor and effector proteins, infection results in high levels of histone 2AX phosphorylation, or γH2AX. Although phosphorylated H2AX is a characteristic marker of double-stranded DNA breaks, this modification was widely distributed throughout the nucleus of infected cells and was coincident with the bulk of cellular DNA. H2AX phosphorylation occurred after the onset of viral DNA replication and after the degradation of Mre11. Experiments with inhibitors of the serine-threonine kinases ataxia telangiectasia mutated (ATM), AT- and Rad3-related (ATR), and DNA protein kinase (DNA-PK), the kinases responsible for H2AX phosphorylation, indicate that H2AX may be phosphorylated by ATR during a wild-type adenovirus infection, with some contribution from ATM and DNA-PK. Viral DNA replication appears to be the stimulus for this phosphorylation event, since infection with a nonreplicating virus did not elicit phosphorylation of H2AX. Infected cells also responded to high levels of input viral DNA by localized phosphorylation of H2AX. These results are consistent with a model in which adenovirus-infected cells sense and respond to both incoming viral DNA and viral DNA replication.Cellular DNA damage response pathways protect and preserve the integrity of the genome. These pathways, which are activated in response to various forms of DNA damage, involve a number of proteins that participate in both DNA repair and cell cycle progression (62). The serine-threonine kinases ataxia telangiectasia mutated (ATM), AT- and Rad3-related (ATR), and DNA protein kinase (DNA-PK) are activated in response to distinct types of damage. The ATM pathway is activated primarily by double-stranded DNA breaks (4, 30). DNA-PK acts in conjunction with the DNA ligase IV/XRCC4 complex to mediate the ligation of double-stranded breaks through nonhomologous end joining (34). The ATR pathway can be activated in response to a wide range of genotoxic stresses, such as base or nucleotide excision, double-stranded breaks, or single-stranded breaks. Activation of ATR is generally thought to occur via the recognition of single-stranded tracks of DNA (63). Each of these pathways leads to the phosphorylation and activation of a number of cellular proteins such as the variant histone H2AX, checkpoint kinases 1 and 2 (Chk1 and Chk2), and Nijmegen break syndrome protein 1 (NBS1), among others (62). Signals transmitted by a cascade of phosphorylation events result in cell cycle arrest and the accumulation of repair protein complexes at sites of DNA damage.Upon recognition of a double-stranded DNA break by the cell, H2AX is phosphorylated on an extended C-terminal tail at serine 139 by the phosphatidylinositol 3-kinase (PI3K)-related kinases ATM, ATR, and DNA-PK (9, 41, 44, 58). Considered one of the earliest indications of a double-stranded DNA break, phosphorylated H2AX (γH2AX) acts as a scaffolding protein to which a number of DNA repair factors can dock to facilitate repair of the damaged DNA (36, 42, 53). Areas of phosphorylated H2AX, termed γH2AX foci, are enriched for proteins involved in both homologous recombination and nonhomologous end joining, such as NBS1, BRCA1 (42), and Mdc1 (24, 50).Although adenovirus is able to activate both ATM and ATR pathways (11), adenoviral proteins limit the extent and consequences of signaling through these pathways. The E1B-55K and E4orf6 proteins form an E3 ubiquitin ligase with the cellular proteins Cullin-5, elongins B and C, and Rbx1 (28, 43). This complex targets key cellular proteins involved in cellular response to DNA damage, including p53 (28, 43), Mre11 (51), and DNA ligase IV (3). The E4orf3 gene product targets cellular proteins central to both the cellular DNA damage response and the antiviral response. The E4orf3 protein of species C adenoviruses alters the localization of Mre11/Rad50/NBS1 (MRN) complex members within the nucleus to prevent association with centers of viral DNA replication and to ensure efficient viral DNA replication (17, 18, 52). In addition, these three viral early proteins direct members of the MRN complex (2, 35) and the single-stranded DNA-binding protein 2 (20) to cytoplasmic aggresomes, where these sequestered proteins are effectively inactivated. These viral activities, along with the inactivation of DNA-PK by E4orf3 and E4orf6 gene products (7), appear to prevent recognition of viral genomes by the MRN complex and prevent ligation of these genomes through nonhomologous end joining. In cells infected with a virus with E4 deleted, Mre11 physically binds to viral DNA in an NBS1-dependent manner and may prevent efficient genome replication (37). The overlapping means by which adenovirus disables the MRN complex and prevents DNA damage repair serves to illustrate the importance of this activity for a productive adenovirus infection. However, despite having DNA damage signaling and DNA repair pathways dismantled, adenovirus-infected cells exhibit some characteristic changes associated with DNA damage signaling events, such as the phosphorylation of H2AX (6, 15). Thus, it appears that adenovirus effectively inhibits DNA repair activity but may not fully suppress the early events of DNA damage signaling.The focus of the present study was to elucidate the activation of DNA damage signaling pathways revealed by phosphorylation of the variant histone H2AX during wild-type adenovirus infection and to determine what stage of the virus life cycle leads to this activation. We demonstrate that infected cells respond to viral genome replication with high levels of H2AX phosphorylation throughout the cell nucleus. This phosphorylation event is not localized to viral replication centers and does not appear to be concurrent with cellular double-stranded DNA breaks; rather, H2AX phosphorylation occurs coincident with the bulk of cellular chromatin. H2AX phosphorylation follows viral DNA replication and reaches peak levels after the degradation of the Mre11. In addition, we observed that infected cells can respond to both the presence of incoming viral genomes and genome replication by initiating H2AX phosphorylation.  相似文献   

17.
18.
The only universally conserved sequence among all influenza A viral neuraminidases is located between amino acids 222 and 230. However, the potential roles of these amino acids remain largely unknown. Through an array of experimental approaches including mutagenesis, reverse genetics, and growth kinetics, we found that this sequence could markedly affect viral replication. Additional experiments revealed that enzymes with mutations in this region demonstrated substantially decreased catalytic activity, substrate binding, and thermostability. Consistent with viral replication analyses and enzymatic studies, protein modeling suggests that these amino acids could either directly bind to the substrate or contribute to the formation of the active site in the enzyme. Collectively, these findings reveal the essential role of this unique region in enzyme function and viral growth, which provides the basis for evaluating the validity of this sequence as a potential target for antiviral intervention and vaccine development.  相似文献   

19.
Hepatitis C virus (HCV) is a positive-strand RNA virus of the Flaviviridae family and a major cause of liver disease worldwide. HCV replicates in the cytoplasm, and the synthesis of viral proteins induces extensive rearrangements of host cell membranes producing structures, collectively termed the membranous web (MW). The MW contains the sites of viral replication and assembly, and we have identified distinct membrane fractions derived from HCV-infected cells that contain replication and assembly complexes enriched for viral RNA and infectious virus, respectively. The complex membrane structure of the MW is thought to protect the viral genome limiting its interactions with cytoplasmic pattern recognition receptors (PRRs) and thereby preventing activation of cellular innate immune responses. Here we show that PRRs, including RIG-I and MDA5, and ribosomes are excluded from viral replication and assembly centers within the MW. Furthermore, we present evidence that components of the nuclear transport machinery regulate access of proteins to MW compartments. We show that the restricted assess of RIG-I to the MW can be overcome by the addition of a nuclear localization signal sequence, and that expression of a NLS-RIG-I construct leads to increased immune activation and the inhibition of viral replication.  相似文献   

20.
Analysis of nuclei of adenovirus 12-infected cells revealed that viral DNA replicated in association with the nuclear membrane and that complete viral DNA was liberated from the nuclear membrane. Analysis of isolated nuclei in vitro showed that DNA polymerase activity increased in the nuclear membrane of adenovirus 12-infected cells without addition of primer DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号