首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: Determination of genetic diversity among UK Burkholderia cepacia isolates from various environmental niches, principally woodland tree rhizospheres and onions. METHODS AND RESULTS: Genus determination was made using polymerase chain reaction (PCR) amplification and fatty acid methyl ester profiling. Genetic diversity was investigated by repetitive sequence genetic PCR fingerprinting. Several onion isolates were similar to clinical isolates but others were diverse. Some environmental isolates were possibly synonymous with B. cepacia and B. gladioli but most from woodland rhizospheres were distinct and clustered together. The 16S rRNA genes of representatives from these clusters were PCR amplified, sequenced and phylogenetically compared with all known Burkholderia and related species. This revealed that the rhizospheric isolates had closest affinity with Burkholderia spp. with known bioremediative and biocontrol capabilities and were unrelated to taxa comprising plant or human pathogenic strains. CONCLUSIONS: All of the analyses investigated revealed that environmental and onion isolates of B. cepacia complex bacteria are genetically diverse but that woodland rhizospheric isolates are related to each other and unrelated to plant or human pathogenic strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Woodland rhizospheric isolates of B. cepacia are potentially good candidates for use in bioremediation and biocontrol, as they appear distinct from plant or human pathogenic strains.  相似文献   

2.
A number of phylogenetic studies have been carried out on biocontrol agents having similar biological control activity. However, no work has been carried out to determine the phylogenetic relationship amongst various groups of biological control agents with varied biocontrol properties. Our aim was to derive a phylogenetic relationship between diverse biocontrol agents belonging to the deuteromycetes and determine its correlation with their spore morphology and their biocontrol activity. RAPD was used to assess genomic variability in fungi used as biological control agents which included ten isolates of nematophagous fungi such as Arthrobotrys sp., Duddingtonia sp., Paecilomyces sp. and Verticillium sp., along with two isolates of fungal biocontrol agents such as Trichoderma sp. and two isolates of entomopathogenic fungi including Beauveria sp. A plant pathogenic fungus, Verticillium alboatrum was also included to increase the diversity of Deuteromycetes used. A similarity matrix was created using Jaccard's similarity coefficient & clustering was done using unweighted pair group arithmetic mean method (UPGMA). The final dendogram was created using a combination of two programs, Freetree and TreeExplorer. The phylogenetic tree constructed from the RAPD data showed marked genetic variability among different strains of the same species. The spore morphologies of all these fungi were also studied. The phylogenetic pattern could be correlated with the conidial and conidiophore morphology, a criterion commonly used for the classification of fungi in general and Deuteromycetes in particular. Interestingly, the inferred phylogeny showed no significant grouping based on either their biological control properties or the trapping structures amongst the nematophagous fungi as reported earlier by other workers. The phylogenetic pattern was also similar to the tree obtained by comparing the 18S rRNA sequences from the database. The result clearly indicates that the classical method of classification of these deuteromycete members on the basis of their spore morphology is reliable and could be used for identification of these fungi at species level. The PCR fragment pattern polymorphism exhibited by the various species of a genus and different strains of a species indicates that construction of probes from one or more of these fragments will prove to be useful as a rapid tool for identification of species and strains of nematophagous fungi in future.  相似文献   

3.
Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability.  相似文献   

4.
Zhou L  Bailey KL  Chen CY  Keri M 《Mycologia》2005,97(3):612-620
Molecular and genetic approaches were used to evaluate the genetic relatedness among isolates of the fungus Phoma macrostoma Montagne originating from Canada and Europe and to other species in the genus Phoma. Distinct differences were observed in genetic variation among nine species of the genus Phoma. Randomly amplified polymorphic DNA (RAPD) revealed the presence of intraspecific genetic variation among the isolates of P. macrostoma, with the isolates being used for biological weed control being distributed in a distinct phylogenetic cluster. Additional variation within the biocontrol isolate cluster in P. macrostoma was revealed by pulsed field gel electrophoresis (PFGE), which showed that biocontrol isolates generated two different chromosomal profiles, however the profiles did not relate to their Canadian ecozone origin. Mating studies showed that biocontrol isolates of P. macrostoma from Canada did not produce sexual reproductive structures and were incapable of crossing. These studies also confirmed that no obvious differentiation exists among the biocontrol isolates of P. macrostoma from Canadian Ecozones 3 and 4.  相似文献   

5.
Molecular biology approaches were employed to examine the genetic diversity of bacteria from the Cytophaga/Flexibacter/Bacteroides (CFB) phylum in the rumen of cattle. By this means we were able to identify cultured strains that represent some of the larger CFB clusters previously identified only by PCR amplification and sequencing. Complete 16S rDNA sequences were obtained for 16 previously isolated rumen strains, including the type strains of Prevotella ruminicola, P. bryantii, P. brevis and P. albensis to represent a wide range of diversity. Phylogenetic analysis of cultured strains revealed the existence of three clusters of ruminal CFB: (i) a cluster of Prevotella strains, which have been found only in the rumen, including the two type strains, P. brevis GA33(T) and P. ruminicola 23(T); (ii) Prevotella spp. that cluster with prevotellas from other ecological niches such as the oral cavity and which include the type strains, P. bryantii B(1)4(T) and P. albensis M384(T); (iii) two Bacteroides spp. strains clustering with B. forsythus of oral origin. In order to establish whether the cultivated isolates cover the whole range of ruminal CFB genetic diversity, 16S rRNA gene sequences were amplified and cloned from DNA extracted from the same rumen samples (one cow in Slovenia, one in Scotland and three in Japan). Sequencing and phylogenetic analysis of 16S rRNA genes confirmed the existence of two superclusters of ruminal Prevotella, one exclusively ruminal and the other including non-ruminal species. In the case of ruminal Bacteroides spp., however, phylogenetic analysis revealed the existence of three new superclusters, one of which has as yet no cultivable counterpart. Interestingly, these Bacteroides clusters were represented almost exclusively by clone libraries from the Japanese cattle and only three sequences were from the European cattle. This study agrees with previous analyses in showing that rumen Prevotella/Bacteroides strains exhibit a remarkable degree of genetic diversity and suggests that different strain groupings may differ greatly in their recovery by cultural methods. The most important conclusion, however, is that cultured strains can be identified that represent some of the larger clusters previously identified only by PCR amplification and sequencing.  相似文献   

6.
In a combined approach of phenotypic and genotypic characterization, 28 indigenous rhizobial isolates obtained from different chickpea growing regions in peninsular and northern India were analyzed for diversity. The field isolates were compared to two reference strains TAL620 and UPM-Ca142 representing M. ciceri and M. mediterraneum respectively. Phenotypic markers such as resistance to antibiotics, tolerance to salinity, temperature, pH, phosphate solubilization ability, growth rate and also symbiotic efficiency showed considerable diversity among rhizobial isolates. Their phenotypic patterns showed adaptations of rhizobial isolates to abiotic stresses such as heat and salinity. Two salt tolerant strains (1.5% NaCl by T1 and T4) with relatively high symbiotic efficiency and two P-solubilising strains (66.7 and 71 microg/ml by T2 and T5) were identified as potential bioinoculants. Molecular profiling by 16S ribosomal DNA Restriction Fragment Length Polymorphism (RFLP) revealed three clusters at 67% similarity level. Further, the isolates were differentiated at intraspecific level by 16S rRNA gene phylogeny. Results assigned all the chickpea rhizobial field isolates to belong to three different species of Mesorhizobium genus. 46% of the isolates grouped with Mesorhizobium loti and the rest were identified as M. ciceri and M. mediterraneum, the two species which have been formerly described as specific chickpea symbionts. This is the first report on characterization of chickpea nodulating rhizobia covering soils of both northern and peninsular India. The collection of isolates, diverse in terms of species and symbiotic effectiveness holds a vast pool of genetic material which can be effectively used to yield superior inoculant strains.  相似文献   

7.
Fluorescent pseudomonads that produce antibiotic 2,4-diacetylphloroglocinol (2,4-DAPG) are important group of PGRP that inhibit a broad spectrum of plant pathogenic fungi. Studying on genetic diversity of 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads has been shown with special importance. The first step to investigate the genetic diversity of these bacteria is detecting of the genes required for the biosynthesis of this antibiotic. The objectives of the current study were detection of phlD gene within fluorescent pseudomonads by a PCR-based assay, and comparison of phenotypic and genotypic characteristics of fluorescent pseudomonads with proven biocontrol potential against some soil-borne phytopathogenic fungi. We used a collection of 47 fluorescent Pseudomonas spp. some with known biological control activity against Macrophomina phaseolina, Rhizoctonia solani, Phytophthora nicotianae var. parasitica, Pythium sp. and Fusarium sp. in vitro and the potential to produce known secondary metabolites such as, siderophore, HCN and protease. The results indicated that 66, 40.42, 63.82,48.94 and 27.65% of strains revealed antagonistic activity against R. solani, M. phaseolina, Pythium sp., P. nicotianae and Fusarium sp., respectively. Rhizoctonia solani recognized as the most vulnerable fungus. Among 47 strains, 76.59, 97.87 and 17% of strains produced protease, siderophore and HCN, respectively. We could detect phlD gene in strains P-5, P-32, P-47. Strain CHA0 was used as positive control for the detection this gene. Overall, there was no obvious link between the existence of phlD gene and inhibition of fungal growth or production of the antifungal metabolites in vitro. But in some strains such as CHA0 and P-5, we saw a link between the existence of phlD and antifungal activities. Studying on detection and diversity of phlD provides a fundamental knowledge for developing a rapid genetic screening system to identify a potential biocontrol strains.  相似文献   

8.
Paecilomyces lilacinus was described more than a century ago and is a commonly occurring fungus in soil. However, in the last decade this fungus has been increasingly found as the causal agent of infections in man and other vertebrates. Most cases of disease are described from patients with compromised immune systems or intraocular lens implants. In this study, we compared clinical isolates with strains isolated from soil, insects and nematodes using 18S rRNA gene, internal transcribed spacer (ITS) and partial translation elongation factor 1-α (TEF) sequences. Our data show that P. lilacinus is not related to Paecilomyces, represented by the well-known thermophilic and often pathogenic Paecilomyces variotii. The new genus name Purpureocillium is proposed for P. lilacinus and the new combination Purpureocillium lilacinum is made here. Furthermore, the examined Purpureocillium lilacinum isolated grouped in two clades based on ITS and partial TEF sequences. The ITS and TEF sequences of the Purpureocillium lilacinum isolates used for biocontrol of nematode pests are identical to those causing infections in (immunocompromised) humans. The use of high concentrations of Purpureocillium lilacinum spores for biocontrol poses a health risk in immunocompromised humans and more research is needed to determine the pathogenicity factors of Purpureocillium lilacinum.  相似文献   

9.
The aim of the present study was to characterize and identify vibrios isolated from cultured clams in Galicia (NW Spain). A total of 759 isolates were obtained, phenotypically characterized, grouped and assigned to the genus Vibrio. Subsequently, the genomic diversity of 145 representative strains was analyzed by means of amplified fragment length polymorphism (AFLP), which revealed a high genetic diversity amongst these isolates. Only 57 out of 145 strains could be identified to the species level, and they were distributed in 13 AFLP clusters. V. cyclitrophicus, V. splendidus and V. alginolyticus were the most abundantly represented species. Eighty-eight isolates remained unidentified, 59 were distributed over 16 clusters, while 29 were unclustered. Sequencing of the 16S rRNA and two house-keeping genes (rpoA and recA) from representative strains belonging to eight unidentified clusters with the highest number of isolates confirmed their assignation to the Vibrionaceae family, and some of these probably represent new species within the genus. The present study confirmed that the phenotypic characterization of vibrios is not sufficient to identify them at the species level. A wide diversity of vibrios was found in cultured clams from all four geographic locations analyzed. In total, more than 12 Vibrio species and at least three potential new species in this genus were identified.  相似文献   

10.
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.  相似文献   

11.
A screening strategy was developed to assess the potential of plant-associated bacteria to control diseases caused by Rhizoctonia solani Kühn. About 434 already characterized antagonistic bacterial strains isolated from diverse plant species and microenvironments were evaluated for biocontrol and plant growth promotion by a hierarchical combination of assays. Analyzing in vitro antagonism towards different Rhizoctonia isolates resulted in a selection of 20 potential biocontrol agents. The strains were characterized by their antagonistic mechanisms in vitro as well as their production of the plant growth hormone indole-3-acetic acid. The plant growth promoting effect by antagonistic bacteria was determined using a microtiter plate assay on the basis of lettuce seedlings. Lettuce and sugar beet as host plant were included in the biocontrol experiments in which the antagonistic effect of 17 bacterial isolates could be confirmed in vivo. Sequencing of the 16S rDNA gene and (or) fatty acid methyl ester gas chromatography was used to identify the antagonistic isolates. Molecular fingerprints of isolates obtained by BOX-polymerase chain reaction were compared to avoid further investigation with genetically very similar strains and to obtain unique molecular fingerprints for quality control and patent licensing. According to our strategy, an assessment scheme was developed and four interesting biological control agents, Pseudomonas reactans B3, Pseudomonas fluorescens B1, Serratia plymuthica B4, and Serratia odorifera B6, were found. While S. plymuthica B4 was the best candidate to biologically control Rhizoctonia in lettuce, P. reactans B3 was the best candidate to suppress the pathogen in sugar beet.  相似文献   

12.
The intraspecific genetic diversity of Oenococcus oeni, the key organism in the malolactic fermentation of wine, has been evaluated by random amplified polymorphic DNA (RAPD), ribotyping, small-plasmid content, and sequencing of RAPD markers with widespread distribution among the strains. Collection strains representing the diversity of this species have been studied together with some new isolates, many of which were obtained from wines produced by spontaneous malolactic fermentation. The RAPD profiles were strain specific and discerned two main groups of strains coincident with clusters obtained by macrorestriction typing in a previous work. Ribotyping and the conservation of RAPD markers indicates that O. oeni is a relatively homogeneous species. Furthermore, identical DNA sequences of some RAPD markers among strains representative of the most divergent RAPD clusters indicates that O. oeni is indeed a phylogenetically tight group, probably corresponding to a single clone, or clonal line of descent, specialized to grow in the wine environment and universally spread.  相似文献   

13.
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.  相似文献   

14.
AIMS: To evaluate the relationship between leucinostatin production by Paecilomyces lilacinus isolates and their biological activities. METHODS AND RESULTS: The nematicidal, parasitic and enzymatic activity of Australian P. lilacinus isolates were investigated. Nematicidal activities of culture filtrates were measured by mortality and inhibition of reproduction of Caenorhabditis elegans, whereas egg-parasitic activity was measured by colonization on Meloidogyne javanica. Enzymatic activities (protease and chitinase) were assayed on solid media. The results suggest that leucinostatins in P. lilacinus are indicators of nematicidal activity, whereas chitinase activity might be related to parasitism. CONCLUSIONS: Nematicidal activity of culture filtrates of Paecilomyces lilacinus strains related to their ability to produce leucinostatins. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study describing the leucinostatins as nematicides.  相似文献   

15.
Hydrogen cyanide (HCN) is a broad-spectrum antimicrobial compound involved in biological control of root diseases by many plant-associated fluorescent pseudomonads. The HCN synthase is encoded by three biosynthetic genes (hcnA, hcnB, and hcnC), but little is known about the diversity of these genes in fluorescent Pseudomonas spp. and in other bacteria. Here, the partial hcnBC sequence was determined for a worldwide collection of biocontrol fluorescent Pseudomonas spp. Phylogenies based on hcnBC and deduced protein sequences revealed four main bacterial groups, but topological incongruences were found between hcnBC and rrs-based phylogenies, suggesting past lateral transfer of hcnBC among saprophytic root-colonizing pseudomonads. Three of the four groups included isolates from different countries and host plants. Yet, these groups corresponded to distinct, ecologically-adapted populations of HCN-producing biocontrol fluorescent pseudomonads, as indicated by high hcnBC distinctness ratio values and the differences in production levels of HCN in vitro found between groups. This is in accordance with previous results on catabolic properties and biocontrol abilities of these strains. HCN synthase gene diversity may thus reflect the adaptive radiation of HCN+ biocontrol fluorescent pseudomonads. Positive correlations were found between HCN production in vitro and plant protection in the cucumber/Pythium ultimum and tomato/Fusarium oxysporum f. sp. radicis-lycopersici pathosystems.  相似文献   

16.
Species of the genus Trichoderma are economically important as biocontrol agents, serving as a potential alternative to chemical control. The applicability of Trichoderma isolates to different ecozones will depend on the behavior of the strains selected from each zone. The present study was undertaken to isolate biocontrol populations of Trichoderma spp. from the Argentine wheat regions and to select and characterize the best strains of Trichoderma harzianum by means of molecular techniques. A total of 84 out of the 240 strains of Trichoderma were able to reduce the disease severity of the leaf blotch of wheat. Thirty-seven strains were selected for the reduction equal to or greater than 50 % of the severity, compared with the control. The percentage values of reduction of the pycnidial coverage ranged between 45 and 80 %. The same last strains were confirmed as T. harzianum by polymerase chain reaction amplification of internal transcribed spacers, followed by sequencing. Inter-simple sequence repeat was used to examine the genetic variability among isolates. This resulted in a total of 132 bands. Further numerical analysis revealed 19 haplotypes, grouped in three clusters (I, II, III). Shared strains, with different geographical origins and isolated in different years, were observed within each cluster. The origin of the isolates and the genetic group were partially related. All isolates from Paraná were in cluster I, all isolates from Lobería were in cluster II, and all isolates from Pergamino and Santa Fe were in cluster III. Our results suggest that the 37 native strains of T. harzianum are important in biocontrol programs and could be advantageous for the preparation of biopesticides adapted to the agroecological conditions of wheat culture.  相似文献   

17.
八门湾红树林土壤芽胞杆菌分离与多样性分析   总被引:1,自引:0,他引:1  
【目的】了解八门湾红树林海漆林区土壤中可培养芽胞杆菌资源的多样性。【方法】采用水浴处理与直接涂布相结合的方法选择性分离土壤中的芽胞杆菌;利用16S rDNA PCR-RFLP与16S rDNA序列分析技术研究可培养芽胞杆菌资源的遗传多样性和系统发育关系。【结果】16S rDNA PCR-RFLP酶切图谱UPGMA聚类分析表明,在100%的相似性水平上,分离的155株芽胞杆菌分属21个遗传类群,显示了较为丰富的遗传多样性;由21种遗传类型代表菌株的16S rDNA序列分析结果得知,这些芽胞杆菌主要分布在Bacillaceae和Paenibacillaceae科下的Bacillus、Halobacillus、Virgibacillus和Paenibacillus 4个属,其中Bacillus为优势属;有8株芽胞杆菌的16S rDNA序列与数据库中相应模式菌株的最大相似性在95.1%-99.0%之间。【结论】八门湾红树林土壤可培养芽胞杆菌有着较为丰富的遗传多样性,并存在新的芽胞杆菌物种资源。  相似文献   

18.
A total of 77 tannase producing lactobacilli strains isolated from human feces or fermented foods were examined for their genotypic profiles and intensities of tannase production. With a PCR-based assay targeting recA gene, all strains except one isolate were assigned to either Lactobacillus plantarum, L. paraplantarum, or L. pentosus whereas a 16/23S rDNA targeted PCR-based assay identified all except 6 isolates (inclusive of the above one isolate) as one of the closely related species. Subsequent DNA/DNA hybridization assays revealed that these 6 exceptional isolates showed low homology (between 1.2% and 55.8% relative DNA binding) against type strains of the three species. Supplemental carbohydrate fermentation profiles on the 6 isolates indicated that two of them were identified as L. acidophilus, one as Pediococcus acidilactici, one as P. pentosaceus, and two remained unidentifiable. The evidence suggests that the 16/23S rDNA targeted PCR assay can be used as a reliable identification tool for the closely related lactobacilli, and that the tannase gene is widely distributed within members of the Lactobacillaceae family. Meanwhile, a randomly amplified polymorphism DNA (RAPD) analysis revealed that all except 8 isolates were well allocated in 4 major RAPD clusters, though not species specific, consisting of two L. plantarum predominant clusters, one L. paraplantarum predominant, and one L. pentosus predominant. The RAPD patterns of the 8 non-clustered isolates, which consisted of the 6 unidentifiable isolates and 2 isolates identified as L. pentosus, were <40% similarity to those belonging to the 4 clusters. A quantitative assay of the tannase activities showed that there was a marked variation in the activities among the strains, which did not correlate with either species identification or clustering by RAPD.  相似文献   

19.
The ability of Rhizobia to colonize roots of certain legumes and promote their growth has been proven previously. In this study the symbiotic efficiency of 47 Rhizobium strains with 6 common bean cultivars was evaluated under greenhouse condition. Fourteen strains showed the best symbiotic efficiency, whereas some isolates could not induce nodules on host plants. The ability of fourteen superior strains to solubilize phosphorus and zinc and to produce auxin, HCN and siderohores was evaluated in the laboratory assays. Rhizobium strain Rb102 produced the highest amount of auxin (14.2?mg?l?1) in the medium containing l-tryptophan. None of the isolates were able to solubilize ZnO and ZnCO3 on solid medium but in liquid medium some of them had negligible solubilization. The highest P solubility in liquid and solid medium was observed in strains Rb113 and Rb130, respectively. Strain Rb102 produced the highest amount of siderophores. None of the isolates were able to produce HCN. This study showed that there was a great diversity between the strains of Rhizobium in terms of their plant growth promoting traits symbiotic efficiency which supports the importance of screening rhizobia for selecting the most efficient strains. The genetic diversity of the isolates was analyzed by PCR–RFLP of the 16S rDNA. Our rhizobia were clustered into 10 groups showing high levels of diversity.  相似文献   

20.
Pseudomonas populations producing the biocontrol compounds 2,4-diacetylphloroglucinol (Phl) and hydrogen cyanide (HCN) were found in the rhizosphere of tobacco both in Swiss soils suppressive to Thielaviopsis basicola and in their conducive counterparts. In this study, a collection of Phl+ HCN+Pseudomonas isolates from two suppressive and two conducive soils were used to assess whether suppressiveness could be linked to soil-specific properties of individual pseudomonads. The isolates were compared based on restriction analysis of the biocontrol genes phlD and hcnBC, enterobacterial repetitive intergenic consensus (ERIC)-PCR profiling and their biocontrol ability. Restriction analyses of phlD and hcnBC yielded very concordant relationships between the strains, and suggested significant population differentiation occurring at the soil level, regardless of soil suppressiveness status. This was corroborated by high strain diversity (ERIC-PCR) within each of the four soils and among isolates harboring the same phlD or hcnBC alleles. No correlation was found between the origin of the isolates and their biocontrol activity in vitro and in planta. Significant differences in T. basicola inhibition were however evidenced between the isolates when they were grouped according to their biocontrol alleles. Moreover, two main Pseudomonas lineages differing by the capacity to produce pyoluteorin were evidenced in the collection. Thus, Phl+ HCN+ pseudomonads from suppressive soils were not markedly different from those from nearby conducive soils. Therefore, as far as biocontrol pseudomonads are concerned, this work yields the hypothesis that the suppressiveness of Swiss soils may rely on the differential effects of environmental factors on the expression of key biocontrol genes in pseudomonads rather than differences in population structure of biocontrol Pseudomonas subcommunities or the biocontrol potential of individual Phl+ HCN+ pseudomonad strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号