首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of inducible nitric oxide synthase (iNOS) is markedly elevated in rat colon cancers induced by azoxymethane (AOM). In addition, iNOS can be detected in most adenomas and dysplastic aberrant crypt foci (ACF), suggesting that iNOS plays an important role in colon carcinogenesis. In the present study, the effect of an iNOS inhibitor, ONO-1714 ((1S,5S,6R,7R)-7-chloro-3-imino-5-methyl-2-azabicyclo[4.1.0] heptane hydrochloride), on AOM-induced rat colon carcinogenesis was investigated. Male F344 rats were treated with 15 mg/kg body weight of AOM once a week, for 2 weeks. ONO-1714 was given to the rats at doses of 10, 20, 50, and 100 ppm in diet for 4 weeks from the day before the first carcinogen treatment. The number of AOM-induced ACF in the rats receiving 10, 20, 50 and 100 ppm ONO-1714 were 94, 73 (P < 0.05), 71 (P < 0.005), and 53% (P < 0.0005), respectively, of the control value. Moreover, the mean number of aberrant crypts per focus was significantly lowered in 100 ppm ONO-1714 group (P < 0.05). Then, the effects of long-term treatment (32 weeks) with 50 and 100 ppm ONO-1714 on AOM-induced colorectal tumor development were examined. Although incidences and multiplicities of colon tumors did not significantly differ among the groups, number of tumors developing in the middle part of colon were reduced with both 50 and 100 ppm doses (P < 0.05). Furthermore, colon tumor volume tended to be decreased by ONO-1714 treatment, and the number of colon tumors more than 3mm in diameter was significantly lowered in the 100 ppm ONO-1714 group (P < 0.01). These results suggest that iNOS plays roles in both early and late stages of colon carcinogenesis.  相似文献   

2.
An excessive production of nitric oxide (NO) by NO synthase (NOS) is considered to contribute to circulatory disturbance, tissue damage, and refractory hypotention, which are often observed in septic disorders. It is anticipated that a selective inducible NOS (iNOS) inhibitor with excellent pharmacokinetics may be potentially effective as a novel and potent therapeutic intervention in sepsis. We examined whether or not a selective iNOS inhibitor shows iNOS selectivity at the tissue level, when administered systemically. The effects of four NOS inhibitors on plasma nitrite/nitrate (NOx) and tissue NOS levels were compared in major organs (lungs, liver, heart, kidneys, and brain) 6 hr after the injection of E. coli lipopolysaccharide (LPS) into male Wistar-King rats. The rats treated with the three iNOS inhibitors (N-(3-(aminomethyl)benzyl)acetamidine (1400W), (1 S, 5 S, 6 R, 7 R )-2-aza-7-chloro-3-imino-5-methylbicyclo [4.1.0] heptane hydrochloride (ONO-1714), and aminoguanidine) administered 1 hr after LPS injection, showed dose-dependent decreases in plasma NOx levels and NOS activity in the lungs. The non-selective NOS inhibitor (N(G)-methyl-L-arginine (L-NMMA)) had an effect only at the maximum dose. The differences in in vitro iNOS selectivity among these drugs did not correlate with iNOS selectivity at the tissue level. The relationship between plasma NOx levels and NOS activity in the lungs showed a linear relationship with or without the NOS inhibitors. In conclusion, the iNOS selectivity of these drugs does not seem to differ at the tissue level. Plasma NOx levels may be a useful indicator of lung NOS activity.  相似文献   

3.
The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) may contribute to the pathophysiology of intestinal injury induced by ischemia-reperfusion. The aim of the present study was to examine the effect of selective iNOS inhibition by a cyclic amidine analogue, ONO-1714, on reperfusion-induced small intestinal injury and inflammation in rats. Intestinal damage was induced in male Sprague-Dawley rats by clamping both the superior mesenteric artery and the celiac trunk for 30 min, followed by reperfusion. The luminal nitrite concentration in the small intestine was measured by Griess reaction and the iNOS mRNA expression by RT-PCR. The severity of the intestinal mucosal injury and inflammation were evaluated by several biochemical markers and by the histological findings. The rats which were killed after ischemia-reperfusion had increased luminal concentrations of nitrite and iNOS mRNA expression, in addition to severe intestinal inflammation characterized by significant increases in myeloperoxidase activity, a marker of neutrophil infiltration, and by the mucosal content of CINC-1 cytokine, a neutrophil chemotactic cytokine. Administration with ONO-1714 significantly inhibited the luminal NO production. Reperfusion after 30-min ischemia resulted in an increase in luminal protein and hemoglobin concentrations, with levels reaching a maximum after 60 min of reperfusion. In contrast, pre-treatment with ONO-1714 2h before the ischemia inhibited the increases in luminal protein and hemoglobin concentration in a dose-dependent manner (0.001-0.1mg/kg). The contents of the thiobarbituric acid-reactive substances (a marker of oxidative lipid peroxidation) were significantly increased by ischemia-reperfusion, and this increase was reduced by ONO-1714. After reperfusion, the increase in tissue-associated myeloperoxidase activity, an index of neutrophil infiltration, was significantly inhibited by pre-treatment with ONO-1714. ONO-1714 also inhibited increases in intestinal CINC-1 protein and mRNA expression, as determined by ELISA and RT-PCR, respectively. In conclusion, the improvement of reperfusion-induced intestinal injury by ONO-1714 suggested that an excess of NO, produced by iNOS, may have contributed to the initiation/amplification of intestinal inflammatory injury by various mechanisms, including nitrosative and oxidative damage as well as the enhancement of inflammatory cytokine release.  相似文献   

4.
Overproduction of nitric oxide (NO) in the liver has been implicated as an important event in endotoxin shock and in other models of hepatic inflammation and injury. The present study was undertaken to evaluate the effect of ONO-1714, a potent and specific inhibitor of inducible NO synthase (iNOS), on acetaminophen-induced hepatotoxicity in the rats. Oral administration of ONO-1714 dose-dependently inhibited NOx (NO2- and NO3-) accumulation in rat plasma after lipopolysaccharide (LPS) treatment. Intraperitoneal acetaminophen at 1 g/kg caused damage to the centrilobular regions of the liver and increase in serum alanine and aspartate transaminase (ALT and AST, respectively) levels accompanied by elevated plasma NOx levels after 24 h. Oral administration of ONO-1714 at 10 and 100 microg/kg dose-dependently reduced the acetaminophen-induced hepatic tissue damage and the increases in serum ALT and AST levels. ONO-1714 also blocked the increase in plasma NOx concentrations. These findings demonstrate that oral ONO-1714, an iNOS inhibitor, protects against acetaminophen-evoked hepatic inflammation/injury, strongly suggesting that NO produced by iNOS plays a key role in the pathogenesis of this drug-induced hepatotoxicity.  相似文献   

5.
Transgenic (TG) mice with cardiac-specific overexpression of tumor necrosis factor (TNF)-alpha develop dilated cardiomyopathy with myocardial inflammation. The purpose of this study was to investigate the role of nitric oxide (NO) in this mouse model of cardiomyopathy. Female TG and wild-type mice at the age of 10 wk were studied. The expression and activity of inducible NO synthase (iNOS) were significantly increased in the TG myocardium, whereas those of endothelial NOS were not altered. The majority of the iNOS protein was isolated in the interstitial cells. The selective iNOS inhibitor (1S,5S,6R,7R)- 7-chloro-3-imino-5-methyl-2-azabicyclo[4.1.0]heptane hydrochloride (ONO-1714) was used to examine the effects of iNOS induction on myocardial contractility. Echocardiography and left ventricular pressure measurements were performed. Both fractional shortening and the maximum rate of rise of left ventricular pressure were significantly suppressed in TG mice. Although ONO-1714 did not change hemodynamic parameters or contractility at baseline, it significantly improved beta-adrenergic inotropic responsiveness in TG mice. These results indicate that induction of iNOS may play an important role in the pathogenesis of cardiac dysfunction in this mouse model of cytokine-induced cardiomyopathy.  相似文献   

6.
Role of nitric oxide in tolerance to lipopolysaccharide in mice.   总被引:2,自引:0,他引:2  
The injection of repeated doses of lipopolysaccharide (LPS) results in attenuation of the febrile response, which is called endotoxin tolerance. We tested the hypothesis that nitric oxide (NO) arising from inducible NO synthase (iNOS) plays a role in endotoxin tolerance, using not only pharmacological trials but also genetically engineered mice. Body core temperature was measured by biotelemetry in mice treated with NG-monomethyl-L-arginine (L-NMMA, 40 mg/kg; a nonselective NO synthase inhibitor) or aminoguanidine (AG, 10 mg/kg; a selective iNOS inhibitor) and in mice deficient in the iNOS gene (iNOS KO) mice. Tolerance to LPS was induced by means of three consecutive LPS (100 microg/kg) intraperitoneal injections at 24-h intervals. In wild-type mice, we observed a significant reduction of the febrile response to repeated administration of LPS. Injection of L-NMMA and AG markedly enhanced the febrile response to LPS in tolerant animals. Conversely, iNOS-KO mice repeatedly injected with LPS did not become tolerant to the pyrogenic effect of LPS. These data are consistent with the notion that NO modulates LPS tolerance in mice and that iNOS isoform is involved in NO synthesis during LPS tolerance.  相似文献   

7.
Inducible nitric oxide synthase (iNOS) is associated with vascular hypocontractility in systemic vessels after endotoxin lipopolysaccharide (LPS) administration. Although lung iNOS is increased after LPS, its role in the pulmonary circulation is unclear. We hypothesized that whereas iNOS upregulation is responsible for LPS-induced vascular dysfunction in systemic vessels, iNOS does not play a significant role in the pulmonary artery (PA). Using isolated aorta (AO) and PA rings, we examined the effect of nonselective NOS inhibition [N(G)-monomethyl-L-arginine (L-NMMA); 100 micromol/l] and selective iNOS inhibition (aminoguanidine, AG; 100 micromol/l) on alpha(1)-adrenergic-mediated vasoconstriction (phenylephrine; 10(-9) to 10(-3) M) after LPS (Salmonella typhimurium, 20 mg/kg ip). We also determined the presence of iNOS using Western blot and immunohistochemistry. LPS markedly impaired AO contractility (maximal control tension 1,076 +/- 33 mg vs. LPS 412 +/- 39 mg, P < 0.05), but PA contractility was unchanged (control 466 +/- 29 mg vs. LPS 455 +/- 27 mg, P > 0.05). Selective iNOS inhibition restored the AO's response to vasoconstriction (LPS + AG 1,135 +/- 54 mg, P > 0.05 vs. control and P < 0.05 vs. LPS), but had no effect on the PA (LPS + AG 422 +/- 38 mg, P > 0.05 vs. control and LPS). Western blot and immunohistochemistry revealed increased iNOS expression in the AO after LPS, but iNOS was not detected in the PA. Our results suggest that differential iNOS expression after LPS in systemic and pulmonary vessels contributes to the phenomenon of sepsis/endotoxemia-induced systemic hypotension and pulmonary hypertension.  相似文献   

8.
The goal of this study was to determine the role of renal medullary inducible nitric oxide synthase (iNOS) in the arterial pressure, renal hemodynamic, and renal excretory changes that occur in Dahl/Rapp salt-resistant (R) and salt-sensitive (S) rats during high Na intake. Forty R and S rats, equipped with indwelling arterial, venous, and renal medullary catheters, were subjected to high (8%) Na intake, and selective iNOS inhibition was achieved with continuous intravenous or renal medullary interstitial infusion of aminoguanidine (AG; 3.075 mg. kg(-1). h(-1)). After 5 days of AG, mean arterial pressure increased to 132 +/- 2% control in the S rats with high Na intake and intramedullary AG compared with 121 +/- 4% control (P < 0.05) in the S rats with high Na intake alone and 121 +/- 2% control (P < 0.05) in the S rats with high Na intake and intravenous AG. AG did not change arterial pressure in R rats. AG also caused little change in renal hemodynamics, urinary Na, or H(2)O excretion or ACh-induced aortic vasorelaxation in R or S rats. The data suggest that during high Na intake, nitric oxide produced by renal medullary iNOS helps to prevent excessive increases in arterial pressure in the Dahl S rat but not the R rat.  相似文献   

9.
iNOS enhances rat intestinal apoptosis after ischemia-reperfusion   总被引:9,自引:0,他引:9  
The aim of this study was to demonstrate (i) the role of iNOS (inducible nitric oxide synthase) on apoptosis in the rat intestinal mucosa after ischemia-reperfusion, and (ii) the effect of iNOS on the release of cytochrome c from mitochondria. The superior mesenteric artery was occluded for 60 min and was followed by a 60 min reperfusion. Rats were pretreated with an intraperitoneal injection of the following iNOS inhibitors: N-nitro-L-arginine methyl ester, aminoguanidine, and (1S,5S,6R,7R)-7- chloro-3-imino-5-methyl-2-azabicyclo [4. 1. 0] heptane hydrochloride (ONO-1714). Apoptosis was evaluated and NO(X) in the portal vein was assayed. The amount of iNOS, caspase-3, and cytochrome c were determined by a Western blot analysis. Intestinal mucosal epithelial mitochondrial dehydrogenase activity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoilium bromide. Ischemia-reperfusion increased intestinal mucosal apoptosis, NO(X) production in the portal vein, the amount of iNOS protein, and the release of cytochrome c, but not caspase-3. Inhibitors of iNOS significantly attenuated the induction of apoptosis, increased NO(X) production, and release of cytochrome c. Mitochondrial dysfunction was induced by ischemia-reperfusion, which was ameliorated by iNOS inhibitors. Our results indicate that iNOS is related to increased mucosal apoptosis in the rat small intestine after ischemia-reperfusion, which is partly explained by the release of cytochrome c from mitochondria to cytosols following mitochondrial dysfunction.  相似文献   

10.
The goal of this study was to determine the role of inducible nitric oxide synthase (iNOS) in the arterial pressure, renal hemodynamic, renal excretory, and hormonal changes that occur in Dahl/Rapp salt-resistant (R) and salt-sensitive (S) rats during changes in Na intake. Thirty-two R and S rats, equipped with indwelling arterial and venous catheters, were subjected to low (0.87 mmol/day) or high (20.6 mmol/day) Na intake, and selective iNOS inhibition was achieved with intravenous aminoguanidine (AG, 12.3 mg. kg(-1). h(-1)). After 5 days of AG, mean arterial pressure increased to 121 +/- 3% control in the R-high Na AG rats compared with 98 +/- 1% control (P < 0.05) in the R-high Na alone rats, and S-high Na rats increased their arterial pressure to 123 +/- 3% control compared with 110 +/- 2% control (P < 0.05) in S-high Na alone rats. AG caused no significant changes in renal hemodynamics, urinary Na or H(2)O excretion, plasma renin activity, or cerebellar Ca-dependent NOS activity. The data suggest that nitric oxide produced by iNOS normally helps to prevent salt-sensitive hypertension in the Dahl R rat and decreases salt sensitivity in the Dahl S rat.  相似文献   

11.
To evaluate the anti-tumor characteristics of ONO-4007, a synthetic analog of lipid A, the authors examined its acute toxicity and anti-tumor activity in a mouse MM46 mammary tumor system in comparison with LA-15-PP, an E. coli-type synthetic lipid A and LPS. Systemic and local (tumor site) induction of tumor necrosis factor (TNF) by a single i.v. shot of ONO-4007 and LA-15-PP correlated with manifestation of their toxicity, showing that ONO-4007 is 100-fold less effective than LA-15-PP. However, a protocol of repeated administration (3 shots twice a week) exhibited about 10 times more therapeutic potency of ONO-4007 for cancer therapy than expected in the above experiments. In a dose inducing submaximal systemic and intratumoral TNF production, repeated injections (twice a week) of ONO-4007 (10 mg/kg), LA-15-PP (0.1 mg/kg) and LPS (0.1 mg/kg) commonly generated a tolerant state in the systemic response (serum and liver) to subsequent stimulation. The intratumoral response was retained with this repeated administration of ONO-4007, but was not with LA-15-PP or LPS. TIM (tumor-infiltrating macrophages) isolated from mice pre-injected with ONO-4007 and LA-15-PP were found to lose their response to both substances, but the response was rapidly recovered until 72 h after injection and virtually no difference was observed in their response to either drug. The in vitro treatment of naive TIM with ONO-4007 or LA-15-PP for 2 h depressed the response to both substances and the depression continued for 72 h even in culture with fresh medium. The relatively high efficacy of ONO-4007 in cancer therapy likely depends on the retraction of the tolerant state, especially at the tumor site where the response to ONO-4007 is recovered much more efficiently than that to lipid A. While constant recruitment of macrophages to tumor tissue might be involved in the difference of tolerance recovery between this region and others, selective response to ONO-4007 may not be explained simply by the sensitivity of recruited TIM. Pharmacokinetical experiments revealed that repeated injections of LA-15-PP enhanced its clearance from blood circulation, while the clearance of ONO-4007 was stable after repeated injections. Thus, pharmacokinetical properties of ONO-4007 may also possibly be implicated in this event.  相似文献   

12.
This study was designed to determine the role of endogenous prostaglandins (PG) and nitric oxide (NO) in the lipopolysaccharide (LPS)-induced ACTH and corticosterone secretion in conscious rats. LPS (0.5 and 1 mg/kg) given i.p. stimulated the hypothalamic-pituitary-adrenocortical (HPA) activity measured 2 h later. A non-selective cyclooxygenase inhibitor indomethacin (10 mg/kg i.p.), piroxicam (2 mg/kg i.p.), a more potent antagonist of constitutive cyclooxygenase (COX-1) and compound NS-398 (2 mg/kg i.p.), a selective inhibitor of inducible cyclooxygenase (COX-2) given 30 min before LPS (1 mg/kg i.p.) significantly diminished both the LPS-induced ACTH and corticosterone secretion. COX-2 blocker was the most potent inhibitor of ACTH secretion (72.3%). Nomega-nitro-L-arginine methyl ester (L-NAME 2 and 10 mg/kg i.p.), a non-selective nitric oxide synthase (NOS) blocker given 15 min before LPS did not substantially alter plasma ACTH and corticosterone levels 2 h later. Aminoguanidine (AG 100 mg/kg i.p.), a selective inducible nitric oxide synthase (iNOS) inhibitor, considerably enhanced ACTH and corticosterone secretion induced by a lower dose (0.5 mg/kg) of LPS and did not significantly alter this secretion after a larger dose (1 mg/kg) of LPS. L-NAME did not markedly affect the indomethacin-induced inhibition of ACTH and corticosterone response. By contrast, aminoguanidine abolished the indomethacin-induced reduction of ACTH and corticosterone secretion after LPS. These results indicate an opposite action of PG generated by cyclooxygenase and NO synthesized by iNOS in the LPS-induced HPA-response.  相似文献   

13.
The stereoselectivity of carvedilol, a novel beta-adrenoceptor antagonist and vasodilator with one asymmetric carbon atom, was examined at alpha 1- and beta 1-adrenoceptors in vitro and in vivo. (-)-(S)-Carvedilol is a potent, competitive antagonist of the beta 1-adrenoceptor-mediated positive chronotropic response to isoproterenol in guinea pig atrium, with a dissociation constant (KB) of 0.4 nM. (+)-(R)-Carvedilol was more than 100-fold less potent than the (-)-S-enantiomer as an antagonist of beta 1-andrenoceptors, having a KB of approximately 45 nM. Consistent with these findings (-)-(S)-carvedilol (0.1 mg/kg, i.v.) produced a 25-fold rightward shift in the beta 1-adrenoceptor-mediated positive chronotropic response to isoproterenol in pithed rats, whereas the (+)-R-enantiomer had no beta 1-adrenoceptor blocking activity in vivo at this dose. In contrast to the marked degree of stereoselectivity observed at beta 1-adrenoceptors, both (-)-(S)- and (+)-(R)-carvedilol produced equal antagonism of the alpha 1-adrenoceptor-mediated vasoconstrictor response to norepinephrine in rabbit aorta, with KB values of 14 and 16 nM, respectively. Furthermore, in the pithed rat, the alpha 1-adrenoceptor-mediated pressor dose-response curve to cirazoline was shifted approximately 6-fold to the right by both the (+)-R- and (-)-S-enantiomers of carvedilol at a dose of 1 mg/kg, i.v. In anesthetized spontaneously hypertensive rats, (-)-(S)-carvedilol was 6-fold more potent as an antihypertensive than (+)-(R)-carvedilol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A novel central nervous system (CNS) selective neurokinin-1 (NK(1)) receptor antagonist, (2S,3S)-3-[(1R)-6-methoxy-1-methyl-1-trifluoromethylisochroman-7-yl]-methylamino-2-phenylpiperidine 'CJ-17,493' (compound (+)-1), was synthesized stereoselectively using a kinetic resolution by lipase-PS as a key step. Compound (+)-1 displayed high and selective affinity (K(i)=0.2 nM) for the human NK(1) receptor in IM-9 cells, potent activity in the [Sar(9), Met(O(2))(11)]SP-induced gerbil tapping model (ED(50)=0.04 mg/kg, s.c.) and in the ferret cisplatin (10mg/kg, i.p.)-induced anti-emetic activity model (vomiting: ED(90)=0.07 mg/kg, s.c.), all levels of activity comparable with those of CP-122,721. In addition, compound (+)-1 exhibited linear pharmacokinetics rather than the super dose-proportionality of CP-122,721 and this result provides a potential solution for the clinical issue observed with CP-122,721.  相似文献   

15.
《Life sciences》1995,57(21):PL347-PL350
R(+)7-hydroxy-N,N-di-n-propyl-2-aminotetralin (R(+)-7-OH-DPAT), a selective dopamine D3 receptor agonist, (0.03–0.3 mg/Kg, S.c.) dose-relatedly caused emesis, whereas S (−)-7-OH-DPAT at even 1 mg/kg did not induce emesis in dogs. Apomorphine (0.03-0.3 mg/kg, s.c.) or quinpirole (0.03–0.1 mg/Kg, S.c.) also caused emesis in a dose-dependent manner. The potency of R(+)-7-OH-DPAT in inducing emesis was the same as that of apomorpine and quipirole. On the other hand, SKF-38393 (1 and 3 mg/Kg, S.c.), a selective d1 receptor agonist, failed to induce emesis in dogs. The emesis induced by R(+)-7-OH-DPAT (0.3 mg/Kg, S.c.) was inhibited by S(−)-eticlopride (0.01–0.1 mg/Kg, S.c.), a potent D2 and D3 receptor antagonist but not by SCH-23390 (1 mg/Kg, S.c.), a selective d1 receptor antagonist or clozapine (1 mg/Kg, S.c.), a D4 receptor antagonist. These results indicate that dopamine D3 receptors play an important role in the genesis of emesis in dogs.  相似文献   

16.
This study was performed to investigate the mechanism of blood–brain barrier (BBB) permeability change, which was induced by aminoguanidine (AG) after surgical brain injury (SBI) in rats. Compared to control group, AG (150 mg/kg, i.p.) significantly reduced Evans blue extravasation into brain tissue at 24 h after surgical resection, it also induced a 32% decrease of malondialdehyde (MDA) values and a 1.1-fold increase of the glutathione (GSH) levels at 12 h after injury. The expression of inducible nitric oxide synthase (iNOS) reached the peak value at 24 h after SBI, which was significantly attenuated after AG treatment. In addition, ZO-1 protein was up-regulated by AG (150 mg/kg) treatment at 24 h after SBI. Our results indicated that AG could protect the BBB after SBI, which could be correlated with antioxidative property, the down-regulation of iNOS and up-regulation of tight junction protein expression.  相似文献   

17.
目的:观察鞘内注射选择性一氧化氮合酶(nNOS)和诱导型一氧化氮合酶(iNOS)抑制剂对吗啡依赖大鼠纳洛酮催促戒断反应、脊髓Fos蛋白表达和脊髓神经元nNOS和iNOS表达的影响,以探讨nNOS和iNOS在吗啡依赖和戒断反应中的作用。方法:在大鼠吗啡依赖和戒断模型上,采用行为学、免疫组织化学和Western blot方法观察鞘内应用nNOS抑制剂7-硝基吲哚(7-Ni)和iNOS抑制剂氨基胍(AG)对吗啡依赖大鼠纳洛酮催促戒断反应、脊髓Fos蛋白表达和脊髓神经元nNOS和iNOS表达的影响。结果:①鞘内注射7-Ni、AG可明显减轻吗啡依赖大鼠戒断症状,戒断组戒断症状评分为28.6±4.89,7-Ni组为16.2±3.99(P<0.01),AG组为22.94±4.0(P<0.05);戒断组TEA评分为13.5±2.55,7-Ni、AG组分别为7.5±2.56、10.5±2.71(P<0.05);②鞘内注射7-Ni、AG可减少脊髓背角Fos阳性神经元的数目,7-Ni、AG组为228.2±49.5、296.8±50.6,低于戒断组(380±71,P<0.05);③7-Ni、AG组nNOS和iNOS阳性神经元的数目分别为169±32、10.2±2.85,均低于戒断组(239±45,16.8±5.1,P<0.05),两给药组脊髓NOS蛋白的表达也显著减少。结论:nNOS和iNOS抑制剂能减轻吗啡依赖及戒断大鼠的戒断症状和在脊髓水平抑制nNOS和iNOS的表达,nNOS起主要作用而iNOS可能起辅助作用。  相似文献   

18.
A series of methyllycaconitine (1a, MLA) analogs was synthesized where the (S)-2-methylsuccinimidobenzoyl group in MLA was replaced with a (R)-2-methyl, 2,2-dimethyl-, 2,3-dimethyl, 2-phenyl-, and 2-cyclohexylsuccinimidobenzoyl (1b-f) group. The analogs 1b-f were evaluated for their inhibition of [(125)I]iodo-MLA binding at rat brain alpha7 nicotinic acetylcholine receptors (nAChR). In order to determine selectivity, MLA and the analogs 1b-f were evaluated for inhibition of binding to rat brain alpha,beta nAChR using [(3)H]epibatidine. At the alpha7 nAChR, MLA showed a K(i) value of 0.87 nM, analogs 1b-e possessed K(i) values of 1.67-2.16 nM, and 1f showed a K(i) value of 26.8 nM. Surprisingly, the analog 1e containing the large phenyl substituent (K(i)=1.67 nM) possessed the highest affinity. None of the compounds possessed appreciable affinity for alpha,beta nAChRs. MLA antagonized nicotine-induced seizures with an AD(50)=2 mg/kg. None of the MLA analogs were as potent as MLA in this assay. MLA and all of the MLA analogs, with the exception of 1b, antagonized nicotine's antinociceptive effects in the tail-flick assay. Compound 1c (K(i)=1.78 nM at alpha7 nAChR) with an AD(50) value of 1.8 mg/kg was 6.7 times more potent than MLA (AD(50)=12 mg/kg) in antagonizing nicotine's antinociceptive effects but was 5-fold less potent than MLA in blocking nicotine-induced seizures. Since MLA has been reported to show neuroprotection against beta-amyloid(1-42), these new analogs which have high alpha7 nAChR affinity and good selectivity relative to alpha,beta nAChRs will be useful biological tools for studying the effects of alpha7 nAChR antagonist and neuroprotection.  相似文献   

19.
A novel series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and (S)-2-[(2E,4E)-hexadienoyl]-7-(2-{5-methyl-2-[(1E)-5-methylhexen-1-yl]oxazol-4-yl}ethoxy)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14i) was identified as a potent human peroxisome proliferator-activated receptor γ (PPARγ) selective agonist (EC(50)=0.03 μM) and human protein-tyrosine phosphatase 1B (PTP-1B) inhibitor (IC(50)=1.18 μM). C(max) after oral administration of 14i at 10mg/kg was 2.2 μg/ml (4.5 μM) in male SD rats. Repeated administration of 14i and rosiglitazone for 14 days dose-dependently decreased plasma glucose levels, ED(50)=4.3 and 23 mg/kg/day, respectively, in male KK-A(y) mice. In female SD rats, repeated administration of 14i at 12.5-100mg/kg/day for 28 days had no effect on the hematocrit value (Ht) and red blood cell count (RBC), while rosiglitazone significantly decreased them from 25mg/kg/day. In conclusion, 14i showed about a fivefold stronger hypoglycemic effect and fourfold or more weaker hemodilution effect than rosiglitazone, indicating that 14i is 20-fold or more safer than rosiglitazone. Compound 14i is a promising candidate for an efficacious and safe anti-diabetic drug targeting PPARγ and PTP-1B.  相似文献   

20.
N-[3-(4-Oxo-3,4-dihydro-phthalazin-1-yl)phenyl]-4-(morpholin-4-yl) butanamide methanesulfonate monohydrate (ONO-1924H) is a novel inhibitor of poly ADP-ribose polymerase (PARP). In this study, we examined the effects of ONO-1924H on cytotoxicity induced by hydrogen peroxide in PC12 cells in vitro and cerebral damage and neurological deficits induced by middle cerebral artery (MCA) thrombus occlusion in vivo in rat. In the in vitro cytotoxicity assay, exposure to 0.5 mmol/L hydrogen peroxide induced cell death in differentiated PC12 cells. ONO-1924H, a PARP inhibitor (Ki=0.21 micromol/L), reduced cell death in a concentration-dependent manner that was correlated with inhibition of PARP activation. A 50% reduction in cell death (EC50) was achieved with 2.4 micromol/L ONO-1924H. In the MCA occlusion model, ONO-1924H was injected intravenously at doses of 3, 10 and 30 mg/kg/h for 3 h, and cerebral damage and neurological deficits were estimated 24 h after MCA occlusion. ONO-1924H treatment led to a significant decrease in cerebral damage in the 10 mg/kg/h-treated group (P < 0.05) and the 30 mg/kg/h-treated group (P < 0.01). Further, ONO-1924H at doses of 30 mg/kg/h significantly (P < 0.05) improved neurological deficits. These findings suggest that the novel PARP inhibitor, ONO-1924H, affords effective neuroprotection and is a useful therapeutic candidate for the treatment of ischemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号