首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The interaction of fresh serum with promastigotes of Leishmania major, L. donovani, L. mexicana mexicana, L. mexicana amazonensis, and L. braziliensis guyanensis results in lysis of all strains tested with either fresh human or guinea pig serum at 37 C for 30 min. Lysis does not occur in the cold and requires divalent cations and complement that is active hemolytically. Serum deficient in the eighth component of complement is not lytic. Lysis of L. major, L. mexicana, and L. braziliensis proceeds fully in human serum containing EGTA/Mg2+ or in guinea pig serum deficient in the fourth complement component. These species consume only small amounts of C4 from human serum and do not require calcium to optimally bind C3. The data indicate that all are activators of the alternative complement pathway and that the classical pathway is not required for the lysis of these organisms. Promastigotes of L. donovani, in contrast, activate the classical pathway. The presence of calcium is required for both optimal C3 binding and parasite lysis, and L. donovani promastigotes consume C4 when incubated in human serum. In high concentrations, human serum agglutinates all tested Leishmania spp. The agglutinating factor does not require divalent cations, is heat stable, and works at 4 C, suggesting that it is an antibody. This "naturally occurring" antibody cross reacts with all Leishmania spp. and agglutinates them. The adsorption of serum with any Leishmania species or with beads that are Protein A coated, removes the agglutinogen. This factor causes a slight enhancement in alternative pathway activation by L. major and mediates the classical activation by L. donovani. In adsorbed serum, L. donovani promastigotes only weakly activate the alternative complement pathway. Increased concentrations of adsorbed serum are therefore necessary for lysis to proceed. The titer can be partially restored by the addition of heat inactivated serum. Using purified components of the classical cascade, we are unable to visualize surface bound C3 on L. donovani promastigotes unless heat inactivated serum is also present. We conclude that all Leishmania spp. promastigotes are susceptible to lysis by normal serum independent of antibody. The presence of small amounts of naturally occurring antibody in human serum enhances the susceptibility of L. donovani promastigotes to lysis by activating the classical complement pathway.  相似文献   

2.
Killing of Leishmania tropica amastigotes by factors in normal human serum   总被引:2,自引:0,他引:2  
Amastigotes of Leishmania tropica and L. donovani were incubated with fresh or heat-inactivated normal human serum. Viability was estimated by amastigote conversion to promastigote forms and by the ability of serum-treated amastigotes to infect human monocytes. L. tropica, a parasite that causes local skin infection, was killed by fresh but not by heat-inactivated serum. The serum cytotoxic effect on L. tropica was inhibited by EDTA but not by Mg-EGTA. C2-deficient serum killed normally; C6-deficient serum was ineffective. These data indicate that L. tropica is killed by the complement membrane attack complex, in a sequence of reactions initiated by components of the alternate pathway. In contrast, L. donovani, a parasite that causes systemic visceral leishmaniasis, was 10-fold less susceptible to the cytotoxic effects of normal serum. Thus, a profound difference exists in the susceptibility of amastigotes of two species of Leishmania to a defense mechanism present in human serum. Serum complement factors may play an important role in limiting L. tropica to the skin. The resistance of L. donovani to such factors may be the primary reason for its ability to escape from the site of inoculation and cause catastrophic, disseminated disease.  相似文献   

3.
Leishmania mexicana: amastigote hydrolases in unusual lysosomes   总被引:5,自引:0,他引:5  
Leishmania mexicana mexicana (M379) amastigotes were found to contain much higher activities than cultured promastigotes of five putative lysosomal enzymes: cysteine proteinase; arylsulfatase (EC 3.1.6.1); beta-glucuronidase (EC 3.2.1.31); DNase (EC 3.1.22.1), and RNase (EC 3.1.27.1). The release profiles of the first three of these enzymes from digitonin-permeabilized amastigotes suggests that they are located within organelles. Cytochemical staining for cysteine proteinase, using gold labeled antibodies and arylsulfatase, showed that both were present in large organelles previously named "megasomes." Comparative studies with L. mexicana amazonensis (LV78), L. donovani donovani (LV9), and L. major (LV39) revealed that L. mexicana amazonensis was similar to L. mexicana mexicana in possessing both high amastigote cysteine proteinase activity and large numbers of megasome organelles in amastigotes, whereas the other two species lacked both these features. The results suggest that the presence of numerous lysosome-like organelles in the amastigote is a characteristic of the L. mexicana group of parasites.  相似文献   

4.
Luminometry has been used to measure the respiratory burst of rabbit peritoneal neutrophils that is elicited by different forms and species of Leishmania and Herpetomonas. Mid-log phase and metacyclic promastigotes of L. major evoked large responses; that due to metacyclics was lower and slower, but they also bound in smaller numbers than mid-log phase cells. Promastigotes of L. mexicana mexicana also stimulated a large respiratory burst whereas amastigotes elicited little or none. Leishmania donovani promastigotes and culture forms of H. muscarum muscarum and H. m. ingenoplastis all evoked large responses by neutrophils. There was, however, very little response to L. mexicana mexicana promastigotes, L. donovani promastigotes or H. muscarum muscarum when they were added in large numbers. This 'inhibition' was not apparent with L. major.  相似文献   

5.
The polypeptides of Leishmania mexicana mexicana (M379), L. m. amazonensis (LV78), L. major (LV39) and L. d. donovani (LV39) amastigotes and cultured promastigotes have been analysed by SDS-polyacrylamide gel electrophoresis. The polypeptide banding patterns of the promastigotes of the four species were quite similar, but distinct differences were detected between those of amastigotes. The results suggest that the various species of Leishmania are adapted differently for survival and growth in the mammalian host. The polypeptides of L. m. mexicana amastigotes were very rapidly hydrolysed unless protected by the cysteine proteinase inhibitor leupeptin.  相似文献   

6.
We examined the role of the macrophage receptor for C3bi, the CR3, in the phagocytosis of Leishmania major promastigotes and report that M1/70, a monoclonal antibody to the CR3, inhibited the binding of leishmania to macrophages both when the assays were performed in the presence of normal serum and in its absence. In serum, leishmania activate complement and fix C3. Fixation and subsequent cleavage to C3bi occurs rapidly, and by as early as 5 min both forms of the molecule can be identified on the parasites' surface. Complement fixation results in an enhanced phagocytosis of leishmania promastigotes by mouse macrophages. In the case of L. major, 63% of this serum-enhanced binding is inhibitable by M1/70. Binding assays were also performed in the absence of serum with the use of thoroughly washed promastigotes. The addition of M1/70 inhibited binding under these conditions by 54%. Two other rat monoclonal antibodies directed against different antigens on the macrophage plasma membrane did not inhibit binding. M1/70 did not inhibit the binding of promastigotes to rat bone marrow cells, nor did it inhibit IgG-SRBC binding to mouse peritoneal macrophages. These data indicate that the inhibition observed in the presence of M1/70 was specific for the CR3 and that the macrophage receptor for C3bi plays a major role in the phagocytosis of Leishmania major promastigotes, even in the absence of serum.  相似文献   

7.
Macrophages are pivotal cells in interactions of man and leishmania. Leishmanial disease results from intracellular infection of macrophages: parasitized cells are seen in smears or biopsy specimens of lesions; macrophages cultured in vitro support replication of parasites. Paradoxically, parasite destruction is also mediated by macrophages, which become highly cytotoxic after exposure to immune lymphocytes or their lymphokine (LK) products. The precise molecular mechanisms by which lymphocytes or LK induce macrophage activation for leishmanicidal activity, however, are not yet known. We analyzed interactions of leishmania amastigotes with human monocytes cultured in vitro as a nonadherent cell pellet. Leishmania donovani and L. major replicated in freshly isolated monocytes. Monocytes treated with greater than 200 IU/ml of the LK, human Interferon-gamma (IFN-gamma), destroyed tumor cells and L. donovani, but not L. major. Phorbol myristate acetate, endotoxic bacterial lipopolysaccharide, and recombinant human IFN-alpha and IFN-beta did not induce cytotoxicity. The time course for induction of cytotoxicity contrasted sharply with that of previously described monocyte antileishmanial activity: IFN-gamma induced cytotoxicity even when added after infection with L. donovani; induction of cytotoxicity did not require that IFN-gamma be present throughout the period of culture after infection: a 30-min preinfection pulse of IFN-gamma was sufficient to induce 70% of maximal activity; and freshly isolated monocytes and cells cultured for up to 4 days in vitro prior to infection and IFN-gamma treatment were equally responsive to IFN-gamma. These studies provide convincing evidence for intracellular cytotoxicity for L. donovani by freshly isolated human monocytes. This system provides an important base for further analysis of induction and expression of cytotoxic mechanisms against leishmania and other intracellular organisms that cause human disease.  相似文献   

8.
The susceptibility of 26 strains and clones of Leishmania to in vitro killing by lymphokine (LK)-activated macrophages was determined. A spectrum in the susceptibility of Leishmania to macrophage killing was observed. Some leishmanias were completely resistant to killing, including some but not all of the L. mexicana strains studied. This resistance was expressed in amastigotes and stationary growth-phase promastigotes, but not in logarithmic promastigotes. In contrast, some L. braziliensis parasites failed to survive within either activated or nonactivated macrophages. Between these two extremes were strains that survived within nonactivated macrophages, but were readily killed within activated macrophages. These included L. donovani, L. major, and some L. mexicana strains. Finally, one L. mexicana strain (WR357) was found to be susceptible to killing at high LK concentrations, but was relatively resistant at lower LK concentrations or at cutaneous temperatures. The observed differences in susceptibility to macrophage-mediated microbicidal activity may explain, in part, the variable pathogenesis of leishmanial infections.  相似文献   

9.
During the infectious cycle, protozoan parasites undergo various developmental transitions and switch virulence factors in response to extracellular signals in insect vectors and human hosts. Despite the importance of environmental sensing in parasite pathogenicity, little is known about the pathways that transduce extracellular signals into stage-specific gene expression. Here, we used a transgenic approach to gain insight into localisation and activity of three green fluorescence protein (GFP)-tagged Leishmania major mitogen-activated protein kinases, LmaMPK4, 7 and 10. The GFP-LmaMPKs in both L. major and Leishmania donovani transgenic lines showed predominant cytoplasmic localisation and the over-expression had no effect on promastigote morphology, growth and the ability to differentiate into stationary-phase metacyclics for L. major and axenic amastigotes for L. donovani. We isolated the GFP-tagged MPKs from parasite extracts and tested their phosphotransferase activity across various culture conditions. For all three GFP-LmaMPKs, kinase activity was low or absent in promastigote extracts but significantly increased in L. major promastigotes after exposure to pH 5.5 and 34 degrees C, and in axenic L. donovani amastigotes. Enhanced activity correlated with increased GFP-LmaMPK phosphorylation as judged by phospho-specific fluorescent staining of the immuno-precipitated kinases. We could extend these findings to the endogenous LmaMPK10, which accumulated in the phospho-protein fraction of axenic amastigotes but not promastigotes, and thus follows the stage-specific phosphorylation profile of episomally expressed GFP-LmaMPK10. These results provide evidence for the functional conservation of Leishmania MAP kinases in parasite environmental sensing and underscore the potential of transgenic approaches to gain insight into signaling events during the Leishmania life cycle.  相似文献   

10.
A series of H-2 and non-H-2 congenic resistant (CR) strains on a C57BL/10Sn background were infected with 10(7) amastigotes of Leishmania donovani. Non-H-2 congenic strains B10.LP-H-3b and B10.CE(30NX) and (B10.LP-H-3b x B10)F1 hybrids showed a very rapid decrease in liver-parasite burdens beyond day 21. Parasite counts for these strains at day 35 were significantly lower than for all other strains tested. The rapid decrease in parasite numbers, massive lymphocellular infiltration into the liver and strong delayed hypersensitivity reactions to parasite antigens in strains congenic for a portion of chromosome 2 indicated that acquired immunity to L. donovani was controlled by a dominant gene at or near the Ir-2 locus. In addition, B10.129(10M) mice, which differ from C57BL/10Sn at the H-11 locus, showed highly significant increases in parasite numbers at day 35. Other observations supporting the absence of acquired immunity in B10.129(10M) included negative delayed hypersensitivity tests to parasite antigens and the absence of lymphocellular infiltrate into the liver. Although the differences were not as pronounced, H-2 CR strains with H-2b, H-2a, and H-2k haplotypes also showed significantly greater decreases in parasite numbers by day 35 as compared to other H-2 CR strains.  相似文献   

11.
Leishmania donovani is an obligate intracellular parasite of mammalian macrophages. The immunosuppressant cyclosporin A (CsA), which inhibits the production of interleukin (IL)-1, IL-2, and interferon-gamma, increased infections 3-fold without affecting expression of the Lsh gene. The objective of this study was to determine how activation of macrophages by lymphokines affects the multiplication and propagation of the parasite within liver macrophages. Susceptible C57BL/6J and resistant C57L/J mice were treated with 200 mg/kg CsA and then infected intravenously with 10(7) amastigotes. Two weeks later macrophages were collected from the liver by perfusion, plated on coverslips, and incubated for 4, 24, and 48 hr. The percentage of infected macrophages and the number of amastigotes/100 cells were determined after staining the cells with Giemsa's stain. The number of infected macrophages and amastigotes per macrophage was significantly greater in animals of both strains that had been treated with CsA. This study demonstrated clearly that lymphokines or other soluble mediators produced by T cells act, in part, to control infection by L. donovani by minimizing both multiplication within macrophages and their dispersion.  相似文献   

12.
Previous reports have suggested that Leishmania spp. interact with macrophages by binding to Mac-1 (CD1 1b/CD18), a member of the leukocyte integrin family. To better define this interaction, we tested the ability of leishmania promastigotes to bind to purified leukocyte integrins and to cloned integrins expressed in COS cells. We show that leishmania promastigotes bind to cellular or purified Mac-1 but not lymphocyte function-associated antigen-1 in a specific, dose-dependent manner that requires the presence of serum. Binding is inhibited with specific monoclonal antibodies to Mac-1. In the absence of complement opsonization, three different species of leishmania tested fail to bind directly to any of the three leukocyte integrins. We show that binding to Mac-1 requires the third component of complement (C3). Organisms incubated in heat-inactivated serum or serum that has been immunologically depleted of C3 fail to bind to Mac-1. Because the addition of purified C3 to C3-depleted serum restores leishmania binding to Mac-1, we suggest that parasites gain entry into macrophages by fixing complement and subverting a well-characterized adhesive interaction in the immune system between Mac-1 and iC3b.  相似文献   

13.
We investigated the properties of leishmania exosomes with respect to influencing innate and adaptive immune responses. Exosomes from Leishmania donovani modulated human monocyte cytokine responses to IFN-γ in a bimodal fashion by promoting IL-10 production and inhibiting that of TNF-α. Moreover, these vesicles were inhibitory with respect to cytokine responses (IL-12p70, TNF-α, and IL-10) by human monocyte-derived dendritic cells. Exosomes from wild-type (WT) L. donovani failed to prime monocyte-derived dendritic cells to drive the differentiation of naive CD4 T cells into IFN-γ-producing Th1 cells. In contrast, vesicles from heat shock protein (HSP)100(-/-) L. donovani showed a gain-of-function and proinflammatory phenotype and promoted the differentiation of naive CD4 lymphocytes into Th1 cells. Proteomic analysis showed that exosomes from WT and HSP100(-/-) leishmania had distinct protein cargo, suggesting that packaging of proteins into exosomes is dependent in part on HSP100. Treatment of C57BL/6 mice with WT L. donovani exosomes prior to challenge with WT organisms exacerbated infection and promoted IL-10 production in the spleen. In contrast, HSP100(-/-) exosomes promoted spleen cell production of IFN-γ and did not adversely affect hepatic parasite burdens. Furthermore, the proparasitic properties of WT exosomes were not species specific because BALB/c mice exposed to Leishmania major exosomes showed increased Th2 polarization and exacerbation of disease in response to infection with L. major. These findings demonstrate that leishmania exosomes are predominantly immunosuppressive. Moreover, to our knowledge, this is the first evidence to suggest that changes in the protein cargo of exosomes may influence the impact of these vesicles on myeloid cell function.  相似文献   

14.
Monoclonal antibodies D2 and D13 were produced in mice using Leishmania donovani promastigote membrane fractions. To study the species and stage specificity of the antigens recognized by these antibodies, we examined amastigotes prepared in vitro and cultured promastigotes by indirect immunofluorescence with monoclonal antibodies D2 and D13. Monoclonal antibody D2 showed weak reactivity for 9 of 9 strains of L. donovani complex promastigotes and 8 of 9 amastigotes. In contrast, only 2 of 22 strains from other complexes yielded equivocal reactions. Monoclonal antibody D13, however, had much broader reactivity. D13 reacted with all the promastigotes and amastigotes of L. donovani complex isolates as well as with 10 of 22 promastigotes and 8 of 13 amastigotes from other complexes. The high degree of species specificity seen with monoclonal antibody D2 provides a rationale for further study of this antibody and its purified antigen for parasite identification and serodiagnosis of visceral leishmaniasis. The strong fluorescent signal noted with D13 and the presence of the D13 epitope on all L. donovani complex parasites supports studies on its role as an antigen in immunoprophylaxis of visceral leishmaniasis.  相似文献   

15.
A major difference between the metabolism of Leishmania species amastigotes and cultured promastigotes was found in the area of CO2 fixation and phosphoenolpyruvate metabolism. Malate dehydrogenase (EC 1.1.1.37) and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) were at much higher activities in amastigotes than promastigotes of both L. m. mexicana and L. donovani, whereas the reverse was true of pyruvate kinase (EC 2.7.1.40). Pyruvate carboxylase (EC 6.4.1.1) and malic enzyme (carboxylating) (EC 1.1.1.40) could not be detected in L. m. mexicana amastigotes. Promastigotes of L. m. mexicana had a high NAD-linked glutamate dehydrogenase activity in comparison to amastigotes, whereas NADP-linked glutamate dehydrogenase activity was detected only in amastigotes. Leishmania m. mexicana culture promastigotes were killed in vitro by the trivalent antimonial Triostam (LD50, 20 micrograms/ml) and the trivalent arsenical melarsen oxide (LD50, 20 micrograms/ml), but they were unaffected by Pentostam. Neither antimonial drug significantly inhibited leishmanial hexokinase (EC 2.7.1.2), phosphofructokinase (EC 2.7.1.11), pyruvate kinase, malate dehydrogenase or phosphoenolpyruvate carboxykinase, whereas melarsen oxide was a potent inhibitor of all the enzymes tested except phosphoenolpyruvate carboxykinase.  相似文献   

16.
The protozoan parasite Leishmania mexicana proliferates within macrophage phagolysosomes in the mammalian host. In this study we provide evidence that a novel class of intracellular beta1-2 mannan oligosaccharides is important for parasite survival in host macrophages. Mannan (degree of polymerization 4-40) is expressed at low levels in non-pathogenic promastigote stages but constitutes 80 and 90% of the cellular carbohydrate in the two developmental stages that infect macrophages, non-dividing promastigotes, and lesion-derived amastigotes, respectively. Mannan is catabolized when parasites are starved of glucose, suggesting a reserve function, and developmental stages having low mannan levels or L. mexicana GDPMP mutants lacking all mannose molecules are highly sensitive to glucose starvation. Environmental stresses, such as mild heat shock or the heat shock protein-90 inhibitor, geldanamycin, that trigger the differentiation of promastigotes to amastigotes, result in a 10-25-fold increase in mannan levels. Developmental stages with low mannan levels or L. mexicana mutants lacking mannan do not survive heat shock and are unable to differentiate to amastigotes or infect macrophages in vitro. In contrast, a L. mexicana mutant deficient only in components of the mannose-rich surface glycocalyx differentiates normally and infects macrophages in vitro. Collectively, these data provide strong evidence that mannan accumulation is important for parasite differentiation and survival in macrophages.  相似文献   

17.
In the past, ultrastructural investigations of Leishmania mexicana amastigotes revealed structures that were tentatively identified as autophagosomes. This study has now provided definitive data that autophagy occurs in the parasite during differentiation both to metacyclic promastigotes and to amastigotes, autophagosomes being particularly numerous during metacyclic to amastigote form transformation. Moreover, the results demonstrate that inhibiting two major lysosomal cysteine peptidases (CPA and CPB) or removing their genes not only interferes with the autophagy pathway but also prevents metacyclogenesis and transformation to amastigotes, thus adding support to the hypothesis that autophagy is required for cell differentiation. The study suggests that L. mexicana CPA and CPB perform similar roles to the aspartic peptidase PEP4 and the serine peptidase PRB1 in Saccharomyces cerevisiae. The results also provide an explanation for why L. mexicana CPA/CPB-deficient mutants transform to amastigotes very poorly and lack virulence in macrophages and mice.  相似文献   

18.
Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39) were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana) and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6%) presented a mixed infection Leishmania complex species, 17 (58.6%) a mixed infection Leishmania-T. cruzi, and 4 (13.8%) a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%). The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages) dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V.) braziliensis, L. (L.) chagasi and L. (L.) mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V.) braziliensis-L. (L.) mexicana and Leishmania spp.-T. cruzi.The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.  相似文献   

19.
Cellular and humoral immune responses were studied in squirrel monkeys after primary and challenge infection with a Khartoum strain (WR 378) of Leishmania donovani. Each of 7 squirrel monkeys, Saimiri sciureus, was inoculated intravenously with 5 X 10(7) amastigotes/kg body weight, and one other monkey (control) was inoculated with uninfected hamster spleen homogenate. Five infected monkeys recovered from visceral leishmaniasis and two infected monkeys died. Three of the five squirrel monkeys which recovered from the primary infection demonstrated acquired resistance when challenged with an intravenous inoculation of 1.0 X 10(8) amastigotes of L. donovani/kg of body weight. Each of these same three monkeys, the two remaining monkeys which recovered from the primary infection and an uninfected control monkey, were challenged subsequently with an intradermal injection of 2.2 X 10(7) promastigotes of L. braziliensis panamensis (WR539) and developed cutaneous lesions. The reactivity of peripheral blood leukocytes from infected squirrel monkeys to phytohemagglutinin was depressed 2 to 10 weeks after infection, and the reactivity to concanavalin A was not affected. Data on responses to pokeweed mitogen were inconclusive. Reactivity to leishmanial antigens was detected at 12 weeks after infection, which coincided with a marked decrease or disappearance of parasites in liver imprints. Two of five surviving squirrel monkeys developed weak delayed skin test responses to leishmanin antigens after 23 weeks; the three remaining monkeys were anergic during the primary infection but developed strong delayed skin test responses to leishmanin antigens at 7 weeks after a challenge with L. donovani. All squirrel monkeys inoculated with L. donovani developed a hyperproteinemia, hypergammaglobulinemia, hypoalbuminemia, and a reversal of the albumin/globulin ratio between 4 to 18 weeks after infection. Plasma IgM and IgG levels were increased between 2 to 18 weeks after infection; much of this increase was due to IgG. Class-specific antileishmanial antibodies, with generally low IgM and high IgG titers, reached a maximum after 14 and 16 weeks, respectively. A correlation was observed between concentration of gamma-globulins and plasma IgM and IgG levels, but not gamma-globulin concentrations and maximum titers of class-specific antileishmanial antibodies. Squirrel monkeys challenged with L. donovani again developed hyperproteinemia, hypergammaglobulinemia, and increased concentrations of plasma IgM and IgG which correlated with high titers of IgG class-specific antileishmanial antibody 4 weeks after reinoculation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Activation of the Janus-activated kinase 2 (JAK2)/STAT1alpha signaling pathway is repressed in Leishmania-infected macrophages. This represents an important mechanism by which this parasite subverts the microbicidal functions of the cell to promote its own survival and propagation. We recently provided evidence that the protein tyrosine phosphatase (PTP) SHP-1 was responsible for JAK2 inactivation. However, STAT1 translocation to the nucleus was not restored in the absence of SHP-1. In the present study, we have used B10R macrophages to study the mechanism by which this Leishmania-induced STAT1 inactivation occurs. STAT1alpha nuclear localization was shown to be rapidly reduced by the infection. Western blot analysis revealed that cellular STAT1alpha, but not STAT3, was degraded. Using PTP inhibitors and an immortalized bone marrow-derived macrophage cell line from SHP-1-deficient mice, we showed that STAT1 inactivation was independent of PTP activity. However, inhibition of macrophage proteasome activity significantly rescued Leishmania-induced STAT1alpha degradation. We further demonstrated that degradation was receptor-mediated and involved protein kinase C alpha. All Leishmania species tested (L. major, L. donovani, L. mexicana, L. braziliensis), but not the related parasite Trypanosoma cruzi, caused STAT1alpha degradation. Collectively, results from this study revealed a new mechanism for STAT1 regulation by a microbial pathogen, which favors its establishment and propagation within the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号