首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
As in most dicotyledonous plants, the leaves and cotyledons of Arabidopsis have a closed, reticulate venation pattern. This pattern is proposed to be generated through canalization of the hormone auxin. We have identified two genes, FORKED 1 (FKD1) and FORKED 2 (FKD2), that are necessary for the closed venation pattern: mutations in either gene result in an open venation pattern that lacks distal meeting. In fkd1 leaves and cotyledons, the defect is first evident in the provascular tissue, such that the distal end of the newly forming vein does not connect to the previously formed, more distal vein. Plants doubly mutant for both genes have widespread defects in leaf venation, suggesting that the genes function in an overlapping manner at the distal junctions, but act redundantly throughout leaf veins. Expression of an auxin responsive reporter gene is reduced in fkd1 leaves, suggesting that FKD1 is necessary for the auxin response that directs vascular tissue development. The reduction in reporter gene expression and the fkd1 phenotype are relieved in the presence of auxin transport inhibition. The restoration of vein junctions in situations where auxin concentrations are increased indicates that distal vein junctions are sites of low auxin concentration and are particularly sensitive to reduced FKD1 and FKD2 activity.  相似文献   

2.
3.
In most dicotyledonous plants, vascular tissues in the leaf have a reticulate venation pattern. We have isolated and characterized an Arabidopsis (Arabidopsis thaliana) mutant defective in the vascular network defective mutant, van3. van3 mutants show a discontinuous vascular pattern, and VAN3 is known to encode an ADP-ribosylation-factor-GTPase-activating protein that regulates membrane trafficking in the trans-Golgi network. To elucidate the molecular nature controlling the vein patterning process through membrane trafficking, we searched VAN3-interacting proteins using a yeast (Saccharomyces cerevisiae) two hybrid system. As a result, we isolated the plant Dynamin-Related Protein 1A (DRP1A) as a VAN3 interacting protein. The spatial and temporal expression patterns of DRP1AGUS and VAN3GUS were very similar. The subcellular localization of VAN3 completely overlapped to that of DRP1A. drp1a showed a disconnected vascular network, and the drp1a mutation enhanced the phenotype of vascular discontinuity of the van3 mutant in the drp1a van3 double mutant. Furthermore, the drp1 mutation enhanced the discontinuous vascular pattern of the gnom mutant, which had the same effect as that of the van3 mutation. These results indicate that DRP1 modulates the VAN3 function in vesicle budding from the trans-Golgi network, which regulates vascular formation in Arabidopsis.  相似文献   

4.
以拟南芥野生型(C24)和T-DNA插入诱发的突变体(155系)为材料,通过表型分析、组织切片、GUS基因表达的组织化学定位等研究方法对155系的形态结构和生长发育进行了较为细致的观察分析,结果发现:(1)T-DNA插入诱发的155系突变体植株矮化,叶片等器官体积减小,营养生长阶段延长,发育较C24缓慢;(2)同一时期155系的茎顶端分生组织面积较C24减小,顶端平坦,细胞层数减少,两侧叶原基基部之间的距离缩短,呈现出发育迟缓、从茎顶端分生组织向花分生组织转变延迟等特征;(3)GUS基因特异性地在155系茎顶端分生组织和维管组织中表达.结果表明,T-DNA诱捕基因可能在茎顶端分生组织中发挥作用,由于T-DNA的插入使该基因的功能受到了影响,进而影响了155系中茎顶端分生组织的发育模式,产生了155系的一系列表型改变.  相似文献   

5.
Yu L  Yu X  Shen R  He Y 《Planta》2005,221(2):231-242
  相似文献   

6.
We describe a gene that is expressed in lateral and adventitious root primordia of Arabidopsis. The gene was identified by expression of a transposon-borne promoterless beta-glucuronidase gene in lateral root primordia. The gene, designated LRP1 for lateral root primordium 1, and its corresponding cDNA were cloned and sequenced. The expression pattern of the gene in lateral root primordia was confirmed by in situ hybridization with LRP1 cDNA probes. The LRP1 gene encodes a novel protein. LRP1 expression is activated during the early stages of root primordium development and is turned off prior to the emergence of lateral roots from the parent root. Insertion of the transposon in the LRP1 gene disrupted its expression. To evaluate the homozygous insertion line for a mutant phenotype, several aspects of wild-type lateral root development were analyzed. A mutant phenotype has not yet been identified in the insertion line; however, there is evidence that the gene belongs to a small gene family. LRP1 provides a molecular marker to study the early stages of lateral and adventitious root primordium development.  相似文献   

7.
Polysaccharide analyses of mutants link several of the glycosyltransferases encoded by the 10 CesA genes of Arabidopsis to cellulose synthesis. Features of those mutant phenotypes point to particular genes depositing cellulose predominantly in either primary or secondary walls. We used transformation with antisense constructs to investigate the functions of CesA2 (AthA) and CesA3 (AthB), genes for which reduced synthesis mutants are not yet available. Plants expressing antisense CesA1 (RSW1) provided a comparison with a gene whose mutant phenotype (Rsw1(-)) points mainly to a primary wall role. The antisense phenotypes of CesA1 and CesA3 were closely similar and correlated with reduced expression of the target gene. Reductions in cell length rather than cell number underlay the shorter bolts and stamen filaments. Surprisingly, seedling roots were unaffected in both CesA1 and CesA3 antisense plants. In keeping with the mild phenotype compared with Rsw1(-), reductions in total cellulose levels in antisense CesA1 and CesA3 plants were at the borderline of significance. We conclude that CesA3, like CesA1, is required for deposition of primary wall cellulose. To test whether there were important functional differences between the two, we overexpressed CesA3 in rsw1 but were unable to complement that mutant's defect in CesA1. The function of CesA2 was less obvious, but, consistent with a role in primary wall deposition, the rate of stem elongation was reduced in antisense plants growing rapidly at 31 degrees C.  相似文献   

8.
9.
Mou Z  He Y  Dai Y  Liu X  Li J 《The Plant cell》2000,12(3):405-418
An Arabidopsis mosaic death1 (mod1) mutant, which has premature cell death in multiple organs, was isolated. mod1 plants display multiple morphological phenotypes, including chlorotic and curly leaves, distorted siliques, premature senescence of primary inflorescences, reduced fertility, and semidwarfism. The phenotype of the mod1 mutant results from a single nuclear recessive mutation, and the MOD1 gene was isolated by using a map-based cloning approach. The MOD1 gene encodes an enoyl-acyl carrier protein (ACP) reductase, which is a subunit of the fatty acid synthase complex that catalyzes de novo synthesis of fatty acids. An amino acid substitution in the enoyl-ACP reductase of the mod1 mutant causes a marked decrease in its enzymatic activity, impairing fatty acid biosynthesis and decreasing the amount of total lipids in mod1 plants. These results demonstrate that a deficiency in fatty acid biosynthesis has pleiotropic effects on plant growth and development and causes premature cell death.  相似文献   

10.
In a survey of the BrachyTAG mutant population of Brachypodium distachyon, we identified a line carrying a T-DNA insertion in one of the two eukaryotic initiation factor 4A (eIF4A) genes present in the nuclear genome. The eif4a homozygous mutant plants were slow-growing, and exhibited reduced final plant stature due to a decrease in both cell number and cell size, consistent with roles for eIF4A in both cell division and cell growth. Hemizygous plants displayed a semi-dwarfing phenotype, in which stem length was reduced but leaf length was normal. Linkage between the insertion site and phenotype was confirmed, and we show that the level of eIF4A protein is strongly reduced in the mutant. Transformation of the Brachypodium homozygous mutant with a genomic copy of the Arabidopsis eIF4A-1 gene partially complemented the growth phenotype, indicating that gene function is conserved between mono- and dicotyledonous species. This study identifies eIF4A as a novel dose-dependent regulator of stem elongation, and demonstrates the utility of Brachypodium as a model for grass and cereals research.  相似文献   

11.
Arabidopsis inflorescence stems develop a vascular pattern similar to that found in most dicots. The arrangement of vascular tissues within the bundle is collateral, and vascular bundles in the stele are arranged in a ring. Although auxin has been shown to be an inducer of vascular differentiation, little is known about the molecular mechanisms controlling vascular pattern formation. By screening ethyl methanesufonate-mutagenized populations of Arabidopsis, we have isolated an avb1 (amphivasal vascular bundle) mutant with a novel vascular pattern. Unlike the collateral vascular bundles seen in the wild-type stems, the vascular bundles in the avb1 stems were similar to amphivasal bundles, i.e. the xylem completely surrounded the phloem. Furthermore, branching vascular bundles in the avb1 stems abnormally penetrated into the pith, which resulted in a disruption in the ring-like arrangement of vascular bundles in the stele. The avb1 mutation did not affect leaf venation pattern and root vascular organization. Auxin polar transport assay indicated that the avb1 mutation did not disrupt the auxin polar transport activity in inflorescence stems. The avb1 mutation also exhibited pleiotropic phenotypes, including curled stems and extra cauline branches. Genetic analysis indicated that the avb1 mutation was monogenic and partially dominant. The avb1 locus was mapped to a region between markers mi69 and ASB2, which is covered by a yeast artificial chromosome clone, CIC9E2, on chromosome 5. Isolation of the avb1 mutant provides a novel means to study the evolutionary mechanisms controlling the arrangement of vascular tissues within the bundle, as well as the mechanisms controlling the arrangement of vascular bundles in the stele.  相似文献   

12.
Screening an Arabidopsis (Arabidopsis thaliana) T-DNA mutant library for selenate resistance enabled us to isolate a selenate-resistant mutant line (sel1-11). Molecular and genetic characterization showed that the mutant contained a lesion in the SULTR1;2 gene that encodes a high affinity root sulfate transporter. We showed that SULTR1;2 is the only gene among 13 mutated genes of the Arabidopsis sulfate transporter family whose mutation conferred selenate resistance to Arabidopsis. The selenate resistance phenotype of the sel1-11 mutant was mirrored by an 8-fold increase of root growth in the presence of selenate as shown by the calculated lethal concentration values. The impairment of SULTR1;2 activity in sel1-11 resulted in a reduced (35)S-sulfate uptake capacity by both roots and calli and a reduced sulfate and selenate content in root, shoot, and calli. Comparing sulfate-to-selenate ratios instead of absolute sulfate and selenate contents in roots and shoots enabled us to gain better insight into the mechanism of selenate toxicity in Arabidopsis. Roots of the sel1-11 mutant line showed a higher sulfate to selenate ratio than that of wild-type roots, while there were no significant differences in sulfate to selenate ratios in shoots of wild-type and mutant lines. These results indicated that the mechanism that confers the selenate resistance phenotype to the sel1-11 line takes place rather in the roots. It might be in part the result of a lower selenate uptake and of a protective effect of sulfate against the toxic effects of selenate on root growth. These results revealed in plants a central and specific role of the transporter SULTR1;2 in selenate sensitivity; they further suggested that root growth and potentially the root tip activity might be a specific target of selenate toxicity in Arabidopsis.  相似文献   

13.
An Arabidopsis mutant induced by T-DNA insertion was studied with respect to its phenotype, micro-structure of shoot apical meristem (SAM) and histo-chemical localization of the GUS gene in comparison with the wild type. Phenotypical observation found that the mutant exhibited a dwarf phenotype with smaller organs (such as smaller leaves, shorter petioles), and slower development and flowering time compared to the wild type. Optical microscopic analysis of the mutant showed that it had a smaller and more flattened SAM, with reduced cell layers and a shortened distance between two leaf primordia compared with the wild type. In addi-tion, analysis of the histo-chemical localization of the GUS gene revealed that it was specifically expressed in the SAM and the vascular tissue of the mutant, which suggests that the gene trapped by T-DNA may function in the SAM, and T-DNA insertion could influence the functional activity of the related gene in the mutant, lead-ing to alterations in the SAM and a series of phenotypes in the mutant.  相似文献   

14.
The Arabidopsis lesion initiation 1 (len1) mutant develops lesions on leaves without pathogen attack. The len1 plants display lesion formation as they grow under short-day conditions (SD), but not under long-day conditions (LD). This study was conducted to examine how lesion formation, viz., cell death, in len1 plants occurs under SD. I present genetic and physiological data to show that tetrapyrrole metobolism is necessary for lesion formation in len1 plants. Lesion formation was suppressed in the len1lin2 double mutant under SD. lesion initiation 2 (lin2) is another lesion mimic mutant with a defect in tetrapyrrole biosynthesis. Suppression of lesion formation in len1 plants was also observed when they were crossed with the mutants that had defects in other steps in tetrapyrrole metabolism. Suppression was correlated with reduced chlorophyll (Chl) levels in the double mutants. Furthermore, I found that dark-to-light transition caused a bleached phenotype in len1 plants, as in the case of antisense ACD1 (acd, accelerated cell death) plants. ACD1 encodes pheophorbide a oxygenase (PaO), which is involved in Chl catabolism in Arabidopsis. These results suggest that tetrapyrrole metabolism, especially Chl breakdown, might be involved in lesion formation in len1 plants.  相似文献   

15.
Guan YF  Huang XY  Zhu J  Gao JF  Zhang HX  Yang ZN 《Plant physiology》2008,147(2):852-863
During microsporogenesis, the microsporocyte (or microspore) plasma membrane plays multiple roles in pollen wall development, including callose secretion, primexine deposition, and exine pattern determination. However, plasma membrane proteins that participate in these processes are still not well known. Here, we report that a new gene, RUPTURED POLLEN GRAIN1 (RPG1), encodes a plasma membrane protein and is required for exine pattern formation of microspores in Arabidopsis (Arabidopsis thaliana). The rpg1 mutant exhibits severely reduced male fertility with an otherwise normal phenotype, which is largely due to the postmeiotic abortion of microspores. Scanning electron microscopy examination showed that exine pattern formation in the mutant is impaired, as sporopollenin is randomly deposited on the pollen surface. Transmission electron microscopy examination further revealed that the primexine formation of mutant microspores is aberrant at the tetrad stage, which leads to defective sporopollenin deposition on microspores and the locule wall. In addition, microspore rupture and cytoplasmic leakage were evident in the rpg1 mutant, which indicates impaired cell integrity of the mutant microspores. RPG1 encodes an MtN3/saliva family protein that is integral to the plasma membrane. In situ hybridization analysis revealed that RPG1 is strongly expressed in microsporocyte (or microspores) and tapetum during male meiosis. The possible role of RPG1 in microsporogenesis is discussed.  相似文献   

16.
17.
18.
We identified a Dissociation (Ds) transposon-inserted Arabidopsis mutant of a gene (AtRPS13A) homologous to cytoplasmic ribosomal protein (RP) S13. We named our mutant pointed first leaf (pfl) 2 because of its similar phenotype to the pfl1 mutant of the RPS18 gene. This mutant caused multiple phenotypic changes, including aberrant leaf and trichome morphology, retarded root growth, and late flowering. Microscopic analysis showed that the first leaf blade of pfl2 contained a significantly reduced number of palisade cells, which suggests that the mutant phenotype was caused by reduced cell division. However, no phenotypic changes were observed during reproductive growth. In Arabidopsis, the RPS13 protein was encoded by a small expressed gene family including AtRPS13A. A pfl1 pfl2 double mutant showed no additive effect. These results suggest that RPS13 functions in quantitative and pleiotropic ways during growth and development, and that mutations at different kinds of RP gene loci are accumulatable without serious growth defects because they belong to small gene families.  相似文献   

19.
Previously, we identified a peptide transport gene, AtPTR2-B, from Arabidopsis thaliana that was constitutively expressed in all plant organs, suggesting an important physiological role in plant growth and development. To evaluate the function of this transporter, transgenic Arabidopsis plants were constructed expressing antisense or sense AtPTR2-B. Genomic Southern analysis indicated that four independent antisense and three independent sense AtPTR2-B transgenic lines were obtained, which was confirmed by analysis of the segregation of the kanamycin resistance gene carried on the T-DNA. RNA blot data showed that the endogenous AtPTR2-B mRNA levels were significantly reduced in transgenic leaves and flowers, but not in transgenic roots. Consistent with this reduction in endogenous AtPTR2-B mRNA levels, all four antisense lines and one sense line exhibited significant phenotypic changes, including late flowering and arrested seed development. These phenotypic changes could be explained by a defect in nitrogen nutrition due to the reduced peptide transport activity conferred by AtPTR2-B. These results suggest that AtPTR2-B may play a general role in plant nutrition. The AtPTR2-B gene was mapped to chromosome 2, which is closely linked to the restriction fragment length polymorphism marker m246.  相似文献   

20.
In Arabidopsis,both the membrane-anchored receptor-like kinase(RLK) BAK1 and the receptor-like cytoplasmic kinase(RLCK) BIK1 are important mediators of transmembrane signal transduction that regulate plant development and immunity.However,little attention has been paid to their genetic association.This study found the bak1 bik1 double mutant of Arabidopsis displayed a severe dwarfism phenotype due to constitutive immunity and cell death in developing plants.These data suggest that BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号