首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe an approach to isolate molecular scaffolds and R-groups from known chemical compounds in order to generate scaffold and R-group databases from two large compound collections, OptiverseTM and MaybridgeTM. The distributions of molecular scaffolds and R-groups in the parent databases were analysed and compared. We find that a limited number of scaffolds and R-groups account for the majority of database compounds and that most of the scaffolds occur only once or twice in the compound databases. Diversity analysis suggests that the compound and scaffold databases have similar molecular diversity. Implications for library design are discussed.Electronic Supplementary Material available.  相似文献   

2.
RS Beaman  N Cellinese 《ZooKeys》2012,(209):7-17
New information technologies have enabled the scientific collections community and its stakeholders to adapt, adopt, and leverage novel approaches for a nearly 300 years old scientific discipline. Now, few can credibly question the transformational impact of technology on efforts to digitize scientific collections, as IT now reaches into almost every nook and cranny of society. Five to ten years ago this was not the case. Digitization is an activity that museums and academic institutions increasingly recognize, though many still do not embrace, as a means to boost the impact of collections to research and society through improved access. The acquisition and use of scientific collections is a global endeavor, and digitization enhances their value by improved access to core biodiversity information, increases use, relevance and potential downstream value, for example, in the management of natural resources, policy development, food security, and planetary and human health. This paper examines new opportunities to design and implement infrastructure that will support not just mass digitization efforts, but also a broad range of research on biological diversity and physical sciences in order to make scientific collections increasingly relevant to societal needs and interest.  相似文献   

3.
NGS technologies for analyzing germplasm diversity in genebanks   总被引:1,自引:0,他引:1  
More than 70 years after the first ex situ genebanks have been established, major efforts in this field are still concerned with issues related to further completion of individual collections and securing of their storage. Attempts regarding valorization of ex situ collections for plant breeders have been hampered by the limited availability of phenotypic and genotypic information. With the advent of molecular marker technologies first efforts were made to fingerprint genebank accessions, albeit on a very small scale and mostly based on inadequate DNA marker systems. Advances in DNA sequencing technology and the development of high-throughput systems for multiparallel interrogation of thousands of single nucleotide polymorphisms (SNPs) now provide a suite of technological platforms facilitating the analysis of several hundred of Gigabases per day using state-of-the-art sequencing technology or, at the same time, of thousands of SNPs. The present review summarizes recent developments regarding the deployment of these technologies for the analysis of plant genetic resources, in order to identify patterns of genetic diversity, map quantitative traits and mine novel alleles from the vast amount of genetic resources maintained in genebanks around the world. It also refers to the various shortcomings and bottlenecks that need to be overcome to leverage the full potential of high-throughput DNA analysis for the targeted utilization of plant genetic resources.  相似文献   

4.
Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large‐scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics‐based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on‐going genomic and phenotypic studies will enhance ’omics‐wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.  相似文献   

5.
We report here on the current state of our efforts in automated molecular microscopy. Our primary automated data acquisition software system, Leginon, has been completely redesigned over the past two years. The new distributed system has been developed using the Python programming language and is compatible with both Linux and Windows operating systems. The new flexible architecture was designed to allow for the development of customized data collection protocols, several of which are described here. The system has been used to acquire data for approximately 150 experiments and we have demonstrated the capacity for high throughput data acquisition by acquiring images of more than 100,000 particles in a single session at the microscope.  相似文献   

6.
7.
Bacteria account for a major proportion of Earth’s biological diversity. They play essential roles in quite diverse environments and there has been an increasing interest in bacterial biodiversity. Research using novel and efficient tools to identify and characterize bacterial communities has been the key for elucidating biological activities with potential for industrial application. The current approach used for defining bacterial species is based on phenotypic and genomic properties. Traditional and novel DNA-based molecular methods are improving our knowledge of bacterial diversity in nature. Advances in molecular biology have been important for studies of diversity, considerably improving our knowledge of morphological, physiological, and ecological features of bacterial taxa. DNA–DNA hybridization, which has been used for many years, is still considered the golden standard for bacteria species identification. PCR-based methods investigating 16S rRNA gene sequences, and other approaches, such as the metagenome, have been used to study the physiology and diversity of bacteria and to identify novel genes with potential pharmaceutical and other biotechnological applications. We examined the advantages and limitations of molecular methods currently used to analyze bacterial diversity; these are mainly based on the 16S rRNA gene. These methods have allowed us to examine microorganisms that cannot be cultivated by routine methods and have also been useful for phylogenetic studies. We also considered the importance of improvements in microbe culture techniques and how we can combine different methods to allow a more appropriate assessment of bacterial diversity and to determine their real potential for industrial applications.  相似文献   

8.

Background  

The rapid proliferation of biomedical text makes it increasingly difficult for researchers to identify, synthesize, and utilize developed knowledge in their fields of interest. Automated information extraction procedures can assist in the acquisition and management of this knowledge. Previous efforts in biomedical text mining have focused primarily upon named entity recognition of well-defined molecular objects such as genes, but less work has been performed to identify disease-related objects and concepts. Furthermore, promise has been tempered by an inability to efficiently scale approaches in ways that minimize manual efforts and still perform with high accuracy. Here, we have applied a machine-learning approach previously successful for identifying molecular entities to a disease concept to determine if the underlying probabilistic model effectively generalizes to unrelated concepts with minimal manual intervention for model retraining.  相似文献   

9.
Assessing the diversity of the Trypanosomatidae is difficult because of the relatively small number of species that can be cultured. This same problem thwarts efforts to identify the hosts and insect vectors of Phytomonas, a genus of parasites of plants that includes species responsible for devastating epiphytotics of economically important plantations. Here, Myrna Serrano, Marta Teixeira and Erney Camargo review the studies that have led to the development of a PCR-based technique for processing insect and plant juices fixed on glass slides. The method overcomes the need for cultivation, facilitates field collections and also permits the molecular examination of archival smears of Phytomonas. In principle, the method can be adapted to any trypanosomatid as well as to any fastidious parasitic or free-living organism.  相似文献   

10.
Forward chemical genetics is a new method to systematize the discovery and use of small molecules as tools for basic biological research. This approach requires three basic components: a library of compounds; an assay, in which the library is screened for a cellular or organismal phenotype; and a method to trace an active compound to its biological target. Bioactive compounds have traditionally been isolated from natural product extracts, although 'diversity-oriented synthesis' and commercial compound collections are gaining in prominence. New techniques, such as image-based screening and the cytoblot method, have increased the throughput of phenotypic assays. Strategies are also being developed to streamline target identification using molecular biological approaches.  相似文献   

11.
Naturally occurring molecules derived from higher plants, animals, microorganisms and minerals play an important role in the discovery and development of novel therapeutic agents. The identification of molecular targets is of interest to elucidate the mode of action of these compounds, and it may be employed to set up target-based assays and allow structure-activity relationship studies to guide medicinal chemistry efforts toward lead optimization. In recent years, plant-derived natural compounds possessing potential anti-tumor activities have been garnering much interest and efforts are underway to identify their molecular targets. Here, we attempt to summarize the discoveries of several natural compounds with activities against hematological malignancies, such as adenanthin, oridonin, gambogic acid and wogonoside, the identification of their targets, and their modes of actions.  相似文献   

12.
从青海省4个县收集的60份燕麦样本中鉴别可能的重复材料,为编目和入库保存提供依据。通过名称与来源分析、形态变异性与相似性评价以及分子标记遗传多样性与冗余性鉴定,初步认为这些材料的来源不同,特性明显,遗传多样性丰富,具有一定的保存和利用潜力。但从中也发现同名材料较多,个别材料间遗传相似性较高,存在一定遗传冗余性,并鉴别出可能的重复材料,如白燕麦(1083)与白燕麦(1093)、燕麦(1225)与大燕麦(1226)等。本研究为资源工作者有效鉴别种质收集品中的重复材料、提高保种效率提供参考依据。  相似文献   

13.
MOTIVATION: Although natural products represent a reservoir of molecular diversity, the process of isolating and identifying active compounds is a bottleneck in drug discovery programs. The rapid isolation and identification of the bioactive component(s) of natural product mixtures during the bioassay-guided fractionation have become crucial factors in the competition with chemical compound libraries and combinatorial synthetic efforts. In this respect, the use of spectral databases in identification processes is indispensable. RESULTS: We have developed a database containing (13)C spectral information of over 6000 natural compounds, which allows for fast identifications of known compounds present in the crude extracts and provides insight into the structural elucidation of unknown compounds. AVAILABILITY: http://c13.usal.es  相似文献   

14.
Lead compounds discovered from libraries: part 2   总被引:3,自引:0,他引:3  
Many lead compounds with the potential to progress to viable drug candidates have been identified from libraries during the past two years. There are two key strategies most often employed to find leads from libraries: first, high-throughput biological screening of corporate compound collections; and second, synthesis and screening of project-directed libraries (i.e. target-based libraries). Numerous success stories, including the discovery of several clinical candidates, testify to the utility of chemical library collections as proven sources of new leads for drug development.  相似文献   

15.
A collaborative international program was initiated to identify and describe the genetic diversity of living germplasm collections of Theobroma cacao genotypes that are maintained in several international collections scattered throughout tropical cacao growing countries of the world. Simple sequence repeat (SSR) DNA analysis was identified as the most appropriate molecular tool for DNA fingerprinting these collections during an international forum representing academic, government and industry scientists in the cacao community. Twenty-five SSR primers, which had been previously described, were evaluated as potential candidates to define an efficient, standardized, molecular fingerprinting protocol for T. cacao accessions. These primers have been evaluated for reliability, widespread distribution across the cacao genome, number of alleles produced by the SSR primers in cacao and their ability to discriminate between cacao accessions. Approximately 690 cacao accessions were used to evaluate the utility of these SSR primers as international molecular standards, and a small number of test samples of T. cacao were sent to two other independent laboratories for verification. DNA fragments were selectively amplified by PCR, using the SSR primers labeled with fluorescent dyes, and separated by capillary electrophoresis. Based on this study, the 15 SSR primers that had the highest reproducibility and consistency within a common genotype, while allowing the differentiation of separate divergent genotypes, were selected as international molecular standards for DNA fingerprinting of T. cacao.  相似文献   

16.
17.
Traditional landraces of maize are cultivated throughout more than one-half of Mexico''s cropland. Efforts to organize in situ conservation of this important genetic resource have been limited by the lack of knowledge of regional diversity patterns. We used recent and historic collections of maize classified for race type to determine biogeographic regions and centers of landrace diversity. We also analyzed how diversity has changed over the last sixty years. Based on racial composition of maize we found that Mexico can be divided into 11 biogeographic regions. Six of these biogeographic regions are in the center and west of the country and contain more than 90% of the reported samples for 38 of the 47 races studied; these six regions are also the most diverse. We found no evidence of rapid overall decline in landrace diversity for this period. However, several races are now less frequently reported and two regions seem to support lower diversity than in previous collection periods. Our results are consistent with a previous hypothesis for diversification centers and for migration routes of original maize populations merging in western central Mexico. We provide maps of regional diversity patterns and landrace based biogeographic regions that may guide efforts to conserve maize genetic resources.  相似文献   

18.
19.
Food materials designated as “Generally Recognized as Safe” (GRAS) are attracting the attention of researchers in their attempts to systematically identify compounds with putative health-related benefits. In particular, there is currently a great deal of interest in exploring possible secondary benefits of flavor ingredients, such as those relating to health and wellness. One step in this direction is the comprehensive characterization of the chemical structures contained in databases of flavoring substances. Herein, we report a comprehensive analysis of the recently updated FEMA GRAS list of flavoring substances (discrete chemical entities only). Databases of natural products, approved drugs and a large set of commercial molecules were used as references. Remarkably, natural products continue to be an important source of bioactive compounds for drug discovery and nutraceutical purposes. The comparison of five collections of compounds of interest was performed using molecular properties, rings, atom counts and structural fingerprints. It was found that the molecular size of the GRAS flavoring substances is, in general, smaller cf. members of the other databases analyzed. The lipophilicity profile of the GRAS database, a key property to predict human bioavailability, is similar to approved drugs. Several GRAS chemicals overlap to a broad region of the property space occupied by drugs. The GRAS list analyzed in this work has high structural diversity, comparable to approved drugs, natural products and libraries of screening compounds. This study represents one step towards the use of the distinctive features of the flavoring chemicals contained in the GRAS list and natural products to systematically search for compounds with potential health-related benefits.  相似文献   

20.
Maize has always been under constant human selection ever since it had been domesticated. Intensive breeding programs that resulted in the massive use of hybrids nowadays have started in the 60s. That brought significant yield increases but reduced the genetic diversity at the same time. Consequently, breeders and researchers alike turned their attention to national germplasm collections established decades ago in many countries, as they may hold allelic variations that could prove useful for future improvements. These collections are mainly composed of inbred lines originating from well-adapted local open pollinated varieties. However, there is an overall lack of data in the literature about the genetic diversity of maize in SE Europe, and its potential for future breeding efforts. There are no data, whatsoever, on the nutritional quality of the grain, primarily dictated by the zein proteins. We therefore sought to use the Romanian maize germplasm as an entry point in understanding the molecular make-up of maize in this part of Europe. By using 80 SSR markers, evenly spread throughout the genome, on 82 inbred lines from various parts of the country, we were able to decipher population structure and the existing relationships between those and the eight international standards used, including the reference sequenced genome B73. Corroborating molecular data with a standardized morphological, physiological, and biochemical characterization of all 90 inbred lines, this is the first comprehensive such study on the existing SE European maize germplasm. The inbred lines we present here are an important addition to the ever-shrinking gene pool that the breeding programs are faced-with, because of the allelic richness they hold. They may serve as parental lines in crosses that will lead to new hybrids, characterized by a high level of heterosis, nationwide and beyond, due to their existing relationship with the international germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号