首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three different small deletions were produced at a single Pvu 2 restriction site in E. coli 23S rDNA of plasmid pKK 3535 using exonuclease Bal 31. The deletions were located around position 1760 in 23S rRNA and were characterized by DNA sequencing as well as by direct fingerprinting and S1-mapping of the rRNA. Two of the mutant plasmids, Pvu 2-32 and Pvu 2-33, greatly reduced the growth rate of transformed cells while the third mutant, Pvu 2-14 grew as fast as cells containing the wild-type plasmid pKK 3535. All three mutant 23S rRNAs were incorporated into 50S-like particles and were even found in 70S ribosomes and polysomes in vivo. The conformation of mutant 23S rRNA in 50S subunits was probed with a double-strand specific RNase from cobra venom. These analyses revealed changes in the accessibility of cleavage sites near the deletions around position 1760 and in the area around position 800 in all three mutant rRNAs. We suggest, that an altered conformation of the rRNAs at the site of the deletion is responsible for the slow growth of cells containing mutant plasmids Pvu 2-32 and Pvu 2-33.  相似文献   

3.
The ability of mutant 23 S ribosomal RNA to form particles with proteins of the large ribosomal subunitin vivowas studied. A series of overlapping deletions covering the entire 23 S rRNA, were constructed in the plasmid copy of anE. coli23 S rRNA gene. The mutant genes were expressedin vivousing an inducibletacpromoter. Mutant species of 23 S rRNA, containing deletions between positions 40 and 2773, were incorporated into stable ribonucleoprotein particles. In contrast, if one end of the 23 S rRNA was deleted, the mutant rRNA was unstable and did not form ribosomal particles. Protein composition of the mutant particles was specific; the presence of the primary rRNA-binding proteins corresponded to their known binding sites. Furthermore, several previously unknown ribosomal protein binding sites in 23 S rRNA were identified. Implications of the results on ribosome assembly are discussed.  相似文献   

4.
5.
Mutations in several functionally important regions of the 23S rRNA of E. coli increase the levels of frameshifting and readthrough of stop codons. These mutations include U2555A, U2555G, ΔA1916 and U2493C. The mutant rRNAs are lethal when expressed at high levels from a plasmid, in strains also expressing wild type rRNA from chromosomal rrn operons. The lethal phenotype can be suppressed by a range of second-site mutations in 23S rRNA. However, analysis of the functionality of the double mutant rRNAs in heterogeneous ribosome populations shows that in general, the second site mutations do not restore function. Instead, they prevent the assembly, or entry of the mutant 50S subunits into the functioning 70S ribosome and polysome pools, by affecting the competitiveness of the mutant subunits for association with 30S particles. The second-site mutations lie in regions of the 23S rRNA involved in subunit assembly, intersubunit bridge formation and interactions of the ribosome with tRNAs and factors. These second site suppressor mutations thus define functionally important rRNA nucleotides and this approach may be of general use in the functional mapping of large RNAs.  相似文献   

6.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

7.
Escherichia coli dnaK-ts mutants are defective in the late stages of ribosome biogenesis at high temperature. Here, we show that the 21S, 32S and 45S ribosomal particles that accumulate in the dnaK756-ts mutant at 44 degrees C contain unprocessed forms of their 16S and 23S rRNAs (partially processed in the case of 45S particles). Their 5S rRNA stoichiometry and ribosomal protein composition are typical of the genuine ribosomal precursors found in a wild-type (dnaK+) strain. Despite the lack of a functional DnaK, a very slow maturation of these 21S, 32S and 45S particles to structurally and functionally normal 30S and 50S ribosomal subunits still occurs at high temperature. This conversion is accompanied by the processing of p16S and p23S rRNAs to their mature forms. We conclude that: (i) 21S, 32S and 45S particles are not dead-end particles, but true precursors to active ribosomes (21S particles are converted to 30S subunits, and 32S and 45S to 50S subunits); (ii) DnaK is not absolutely necessary for ribosome biogenesis, but accelerates the late steps of this process considerably at high temperature; and (iii) 23S rRNA processing depends on the stage reached in the stepwise assembly of the 50S subunit, not directly on DnaK.  相似文献   

8.
9.
Maiväli  Ü.  Saarma  U.  Remme  J. 《Molecular Biology》2001,35(4):569-574
We have studied in vivothe phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fractionation of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were underrepresented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA–23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

10.
Electron microscopic study of free and ribosome bound rRNAs from E. coli   总被引:3,自引:0,他引:3  
The morphology of ribosomal subunits, nucleoprotein cores, and free rRNAs from Escherichia coli has been studied by two high resolution electron microscopic techniques. Conventional transmission electron micrographs showed unfolding of 30S and 50S ribosomal subunits with increasing depletion of proteins. With dedicated (0.3 nm resolution) scanning transmission electron microscopy we were able to visualize unstained freeze dried ribosomal subunits and free rRNAs without artifacts of staining and structural distortion by air drying. By this technique, we have also determined the mass of individual ribosomal particles and rRNA molecules. While the ribosomal subunits displayed their characteristic structural features and mass, free rRNAs appeared unfolded and polydisperse. These results provide direct evidence for distinct conformational differences between free rRNAs and native ribosomal subunits of E. coli.  相似文献   

11.
Preparation of pure ribosomal subunits carrying lethal mutations is necessary for studying every essential functional region of ribosomal RNA. Affinity purification via a tag, inserted into rRNA proved to be procedure of choice for purification of such ribosomal subunits. Here we describe fast and simple purification method for the 30S ribosomal subunits using affinity chromatography. Streptavidin-binding tag was inserted into functionally neutral helix 33a of the 16 S rRNA from Escherichia coli. Tagged ribosomal subunits were shown to be expressed in E. coli and could be purified. Purified subunits with affinity tag behave similarly to the wild type subunits in association with the 50S subunits, toe-printing and tRNA binding assays. Tagged 30S subunits could support cell growth in the strain lacking wild type 30S subunits and only marginally change the growth rate of bacteria. The presented purification method is thus suitable for further use in purification of 30S subunits carrying any lethal mutations.  相似文献   

12.
13.
The effects of erythromycin on the formation of ribosomal subunits were examined in wild-type Escherichia coli cells and in an RNase E mutant strain. Pulse-chase labelling kinetics revealed a reduced rate of 50S subunit formation in both strains compared with 30S synthesis, which was unaffected by the antibiotic. Growth of cells in the presence of [14C]-erythromycin showed drug binding to 50S particles and to a 50S subunit precursor sedimenting at about 30S in sucrose gradients. Antibiotic binding to the precursor correlated with the decline in 50S formation in both strains. Erythromycin binding to the precursor showed the same 1:1 stoichiometry as binding to the 50S particle. Gel electrophoresis of rRNA from antibiotic-treated organisms revealed the presence of both 23S and 5S rRNAs in the 30S region of sucrose gradients. Hybridization with a 23S rRNA-specific probe confirmed the presence of this species of rRNA in the precursor. Eighteen 50S ribosomal proteins were associated with the precursor particle. A model is presented to account for erythromycin inhibition of 50S formation.  相似文献   

14.
NOG1 is a nucleolar GTP-binding protein present in eukaryotes ranging from trypanosomes to humans. In this report we demonstrate that NOG1 is functionally linked to ribosome biogenesis. In sucrose density gradients Trypanosoma brucei NOG1 co-sediments with 60 S ribosomal subunits but not with monosomes. 60 S precursor RNAs are co-precipitated with NOG1. Together with the nucleolar localization of NOG1, these data indicate that NOG1 is associated with a precursor particle to the 60 S subunit. Disruption of NOG1 function through RNA interference led to a dramatic decrease in the levels of free 60 S particles and the appearance of an atypical rRNA intermediate in which ITS2 was not cleaved. Overexpression of mutant nog1 with a defect in its GTP binding motif on a wild type background caused a modest defect in 60 S biogenesis and a relative decrease in processing of the large subunit rRNAs. In contrast to the mutant protein, neither the N-terminal half of NOG1, which contains the GTP binding motifs, nor the C-terminal half of NOG1 associated with pre-ribosomal particles, although both localized to the nucleolus.  相似文献   

15.
16.
Twelve specific alterations have been introduced into the binding site for ribosomal protein S8 in Escherichia coli 16S rRNA. Appropriate rDNA segments were first cloned into bacteriophage M13 vectors and subjected to bisulfite and oligonucleotide-directed mutagenesis in vitro. Subsequently, the mutagenized sequences were placed within the rrnB operon of plasmid pNO1301 and the mutant plasmids were used to transform E. coli recipients. The growth rates of cells containing the mutant plasmids were determined and compared with that of cells containing the wild-type plasmid. Only those mutations which occurred at highly conserved positions, or were expected to disrupt the secondary structure of the binding site, increased the doubling time appreciably. The most striking changes in growth rate resulted from mutations that altered a small internal loop within the S8 binding site. This structure is phylogenetically conserved in prokaryotic 16S rRNAs and may play a direct role in S8-16S rRNA recognition and interaction.  相似文献   

17.
Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention.  相似文献   

18.
We report the characterization of a novel factor, Rsa4p (Ycr072cp), which is essential for the synthesis of 60S ribosomal subunits. Rsa4p is a conserved WD-repeat protein that seems to localize in the nucleolus. In vivo depletion of Rsa4p results in a deficit of 60S ribosomal subunits and the appearance of half-mer polysomes. Northern hybridization and primer extension analyses of pre-rRNA and mature rRNAs show that depletion of Rsa4p leads to the accumulation of the 27S, 25.5S and 7S pre-rRNAs, resulting in a reduction of the mature 25S and 5.8S rRNAs. Pulse–chase analyses of pre-rRNA processing reveal that, at least, this is due to a strong delay in the maturation of 27S pre-rRNA intermediates to mature 25S rRNA. Furthermore, depletion of Rsa4p inhibited the release of the pre-60S ribosomal particles from the nucleolus to the nucleoplasm, as judged by the predominantly nucleolar accumulation of the large subunit Rpl25-eGFP reporter construct. We propose that Rsa4p associates early with pre-60S ribosomal particles and provides a platform of interaction for correct processing of rRNA precursors and nucleolar release of 60S ribosomal subunits.  相似文献   

19.
The bacterial ribosome is an extremely complicated macromolecular complex the in vivo biogenesis of which is poorly understood. Although several bona fide assembly factors have been identified, their precise functions and temporal relationships are not clearly defined. Here we describe the involvement of an Escherichia coli GTPase, CgtA(E), in late steps of large ribosomal subunit biogenesis. CgtA(E) belongs to the Obg/CgtA GTPase subfamily, whose highly conserved members are predominantly involved in ribosome function. Mutations in CgtA(E) cause both polysome and rRNA processing defects; small- and large-subunit precursor rRNAs accumulate in a cgtA(E) mutant. In this study we apply a new semiquantitative proteomic approach to show that CgtA(E) is required for optimal incorporation of certain late-assembly ribosomal proteins into the large ribosomal subunit. Moreover, we demonstrate the interaction with the 50S ribosomal subunits of specific nonribosomal proteins (including heretofore uncharacterized proteins) and define possible temporal relationships between these proteins and CgtA(E). We also show that purified CgtA(E) associates with purified ribosomal particles in the GTP-bound form. Finally, CgtA(E) cofractionates with the mature 50S but not with intermediate particles accumulated in other large ribosome assembly mutants.  相似文献   

20.
A single base substitution mutation from guanine to cytosine was constructed at position 2661 of Escherichia coli 23S rRNA and cloned into the rrnB operon of the multi-copy plasmid pKK3535. The mutant plasmid was transformed into E.coli to determine the effect of the mutation on cell growth as well as the structural and functional properties of the mutant ribosomes in vivo and in vitro. The results show that the mutant ribosomes have a slower elongation rate and an altered affinity for EF-Tu-tRNA-GTP ternary complex. This supports previous findings which indicated that position 2661 is part of a region of 23S rRNA that forms a recognition site for binding of the ternary complex in the ribosomal A site. Combinations of the 2661 mutation with various mutations in ribosomal protein S12 also demonstrate that elements of both ribosomal subunits work in concert to form this binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号