首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of lumican in the corneal epithelium during wound healing   总被引:7,自引:0,他引:7  
Lumican regulates collagenous matrix assembly as a keratan sulfate proteoglycan in the cornea and is also present in the connective tissues of other organs and embryonic corneal stroma as a glycoprotein. In normal unwounded cornea, lumican is expressed by stromal keratocytes. Our data show that injured mouse corneal epithelium ectopically and transiently expresses lumican during the early phase of wound healing, suggesting a potential lumican functionality unrelated to regulation of collagen fibrillogenesis, e. g. modulation of epithelial cell adhesion or migration. An anti-lumican antibody was found to retard corneal epithelial wound healing in cultured mouse eyes. Healing of a corneal epithelial injury in Lum(-/-) mice was significantly delayed compared with Lum(+/-) mice. These observations indicate that lumican expressed in injured epithelium may modulate cell behavior such as adhesion or migration, thus contributing to corneal epithelial wound healing.  相似文献   

2.

Purpose

To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23) has therapeutic potential in corneal epithelial wound healing.

Methods

TM localization and expression in the murine cornea were examined by immunofluorescence staining. TM expression after injury was also studied. The effect of rTMD23 on corneal wound healing was evaluated by in vitro and in vivo assays.

Results

TM was expressed in the cornea in normal adult mice. TM expression increased in the early phase of wound healing and decreased after wound recovery. In the in vitro study, platelet-derived growth factor-BB (PDGF-BB) induced TM expression in murine corneal epithelial cells by mediating E26 transformation-specific sequence-1 (Ets-1) via the mammalian target of rapamycin (mTOR) signaling pathway. The administration of rTMD23 increased the rate of corneal epithelial wound healing.

Conclusions

TM expression in corneal epithelium was modulated during the corneal wound healing process, and may be regulated by PDGF-BB. In addition, rTMD23 has therapeutic potential in corneal injury.  相似文献   

3.
To investigate a role of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, in corneal epithelial wound healing, we analyzed the expression of TSP-1 in the normal and wounded mouse corneal epithelia and the effect of exogenous TSP-1 on the wound healing. In immunohistochemical analyses of unwounded corneas, TSP-1 was only detectable in endothelial cells. In contrast, TSP-1 appeared on the wounded corneal surface and on the corneal stroma, at 30 min and 8-16 h, respectively, after making an abrasion on the corneal epithelium. This expression of TSP-1 disappeared after 36-48 h, when re-epithelialization was completed. The TSP-1 mRNA level in the wounded corneas increased as much as three fold compared with that in the unwounded corneas. In organ culture, exogenous TSP-1 stimulated the re-epithelialization of corneal epithelial wounds whereas anti-TSP-1 antibody significantly inhibited the re-epithelialization. These findings suggest the possibility that epithelial defects in the corneas stimulate the expression of TSP-1 in the wound area, resulting in the accelerated re-epithelialization of the cornea.  相似文献   

4.
Heme oxygenase (HO) represents an intrinsic cytoprotective system based on its anti‐oxidative and anti‐inflammatory properties mediated via its products biliverdin/bilirubin and carbon monoxide (CO). We showed that deletion of HO‐2 results in impaired corneal wound healing with associated chronic inflammatory complications. This study was undertaken to examine the role of HO activity and the contribution of HO‐1 and HO‐2 to corneal wound healing in an in vitro epithelial scratch injury model. A scratch wound model was established using human corneal epithelial (HCE) cells. These cells expressed both HO‐1 and HO‐2 proteins. Injury elicited a rapid and transient increase in HO‐1 and HO activity; HO‐2 expression was unchanged. Treatment with biliverdin or CORM‐A1, a CO donor, accelerated wound closure by 10% at 24 h. Inhibition of HO activity impaired wound closure by more than 50%. However, addition of biliverdin or CORM‐A1 reversed the effect of HO inhibition on wound healing. Moreover, knockdown of HO‐2 expression, but not HO‐1, significantly impaired wound healing. These results indicate that HO activity is required for corneal epithelial cell migration. Inhibition of HO activity impairs wound healing while amplification of its activity restores and accelerates healing. Importantly, HO‐2, which is highly expressed in the corneal epithelium, appears to be critical for the wound healing process in the cornea. The mechanisms by which it contributes to cell migration in response to injury may reside in the cytoprotective properties of CO and biliverdin. J. Cell. Physiol. 226: 1732–1740, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The roles of the 70-kDa cytosolic heat shock protein (hsp70) in import of precursor proteins into the mitochondria were postulated to be related to (i) unfolding of precursor proteins in the cytosol, (ii) maintenance of the import-competent state, and (iii) unfolding and transport of precursor proteins through contact sites, in cooperation with matrix hsp70. We examined roles of cytosolic hsp70 family members in import of ornithine transcarbamylase precursor (pOTC) into rat liver mitochondria, using an in vitro import system and antibodies against hsp70. Immunoblot analysis using an hsc70 (70-kDa heat shock cognate protein)-specific monoclonal antibody and a polyclonal antibody that reacts with both hsc70 and hsp70 showed that hsc70 is the only or major form of hsp70 family members in the rabbit reticulocyte lysate. The hsc70 antibody did not inhibit pOTC import when added prior to import assay. However, when pOTC was synthesized in the presence of the antibody and then subjected to import assay, pOTC import was markedly decreased. pOTC import was also decreased when the precursor was synthesized in the lysate depleted for hsc70 by treatment with hsc70 antibody-conjugated Sepharose. This reduction was almost completely restored by readdition of purified mouse hsc70 during pOTC synthesis. The readdition of hsc70 after pOTC synthesis and only during the import assay was not effective. Thus, once import competence of pOTC was lost, hsc70 was ineffective for restoration. Newly synthesized pOTC lost import competence in the absence of hsc70 somewhat more rapidly than in its presence. These results indicate that hsc70 is required during pOTC synthesis and not during import into the mitochondria. hsc70 presumably binds to pOTC polypeptide and maintains it in an import-competent form.  相似文献   

6.
7.
We characterized a 24-kDa protein associated with matrix hsp70 (mt-hsp70) of Neurospora crassa and Saccharomyces cerevisiae mitochondria. By using specific antibodies, the protein was identified as MGE, a mitochondrial homolog of the prokaryotic heat shock protein GrpE. MGE extracted from mitochondria was quantitatively bound to hsp70. It was efficiently released from hsp70 by the addition of Mg-ATP but not by nonhydrolyzable ATP analogs or high salt. A mutant mt-hsp70, which was impaired in release of bound precursor proteins, released MGE in an ATP-dependent manner, indicating that precursor proteins and MGE bind to different sites of hsp70. A preprotein accumulated in transit across the mitochondrial membranes was specifically coprecipitated by either antibodies directed against MGE or antibodies directed against mt-hsp70. The preprotein accumulated at the outer membrane was not coprecipitated by either antibody preparation. After being imported into the matrix, the preprotein could be coprecipitated only by antibodies against mt-hsp70. We propose that mt-hsp70 and MGE cooperate in membrane translocation of preproteins.  相似文献   

8.
To elucidate a role for heat shock proteins in islet function, isolated pancreatic islets were labeled with [35S]methionine after control, heat shock, or interleukin 1 beta (IL-1 beta) treatment, extracted in the presence of detergent, and then passed over affinity columns with antibodies against heat shock protein 70 (hsp 70), hsp 70 itself, or ATP conjugated to the columns. In control or IL-1 beta-treated islets, the antibody column efficiently absorbed hsp 70 together with two other proteins of molecular masses 46 and 53 kDa. In extracts from heat-shocked cells, the binding of cellularly synthesized hsp 70 to the antibody column was inefficient but improved by the addition of unlabeled partially purified hsp 70 to the extracts. When assessing the binding of proteins in the extracts to the hsp 70 column, hsp 70 and the 46- and 53-kDa proteins among others all bound to the column. No differences in the patterns of binding to the hsp 70 column between extracts from the different islet exposures were noticed. The 46-kDa protein was identified as actin by immunoblot analysis. ATP-agarose column chromatography revealed a pattern of binding similar to that of the hsp 70 column. It is concluded that hsp 70 contains at least two functional domains, one adjacent to the epitope recognized by the antibody and active in restoring cellular function after heat shock, whereas the other has the ability to bind the 46- and 53-kDa and possibly other proteins. Furthermore, the stress induced by heat shock differs significantly from that after IL-1 beta treatment with respect to the functional behavior of hsp 70.  相似文献   

9.
Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins α2 and β1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin β1 were completely blocked. These data provide evidence that lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.  相似文献   

10.
Studies from our laboratory provide substantial evidence that thymosin beta 4, (Tbeta(4)), an actin-sequestering protein, promotes corneal wound healing through its ability to stimulate epithelial cell migration. Matrix metalloproteinases (MMPs), which are expressed in a wide variety of tissues including the cornea, also play a key role in epithelial cell migration and wound healing. In this study we investigated the role of MMPs in Tbeta(4)-stimulated corneal epithelial cell migration. In Boyden chamber assays, XG076, an inhibitor of the conversion of pro- to active MMPs, had no effect on epithelial cell migration stimulated by exogenous activated MMP-1. However, in in vitro migration assays where the activation of pro-MMPs was blocked, XG076 significantly inhibited cell migration and wound healing in the presence or absence of Tbeta(4). GM6001, a broad-spectrum inhibitor of active MMPs and selective MMP inhibitors, also suppressed Tbeta(4)-stimulated cell migration. Tbeta(4) upregulated MMP-1 gene and protein expression in primary human corneal epithelial cells and in transformed human corneal epithelial cells following scrape wounding. From these results we conclude that MMP catalytic activity is necessary for Tbeta(4) promotion of epithelial cell migration. These novel findings are the first to demonstrate a functional link between the two.  相似文献   

11.
Summary Intermediate filaments of epithelial cells generally consist of specific combinations of keratins. However, cultured epithelial cells from certain tissues and some epithelial tumors have been shown also to express vimentin. In the present study, the expression of vimentin by epithelial cells in healing corneal wounds (partial thickness penetrating wounds) and in tissue culture was analyzed. Both immunohistochemical and immunotransblot analyses indicated that although vimentin was not detected in the normal rabbit corneal epithelium in vivo, cultured rabbit corneal epithelial cells co-express keratins and vimentin. At 1 day post-wounding, vimentin was not detectable in the epithelial cells that had covered the denuded stroma. However, at 2 days post-wounding, the epithelium at the base of the epithelial plug immunoreacted with both anti-vimentin and antikeratin monoclonal antibodies. Immunotransblot analyses of the extracts of the epithelial plugs confirmed the presence of vimentin (Mr=58k). The 58k band was not detected in the extract of normal rabbit corneal epithelium. At day/5, vimentin was no longer detectable in the epithelium. This study demonstrated that corneal epithelial cells transiently co-express vimentin and keratins in vivo during wound healing and in tissue culture. The time-course of the transient expression of vimentin suggests that the vimentin expression in the epithelial cells during healing is not linked to cell proliferation or to the centripetal migration of the epithelium during early stages (first 24 h) of healing, but may be linked to cell-matrix interactions or the migration of basal cells in the upward direction at the following stage of healing.  相似文献   

12.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

13.
During hepatic wound healing, activation of key effectors of the wounding response known as stellate cells leads to a multitude of pathological processes, including increased production of endothelin-1 (ET-1). This latter process has been linked to enhanced expression of endothelin-converting enzyme-1 (ECE-1, the enzyme that converts precursor ET-1 to the mature peptide) in activated stellate cells. Herein, we demonstrate up-regulation of 56- and 62-kDa ECE-1 3'-untranslated region (UTR) mRNA binding proteins in stellate cells after liver injury and stellate cell activation. Binding of these proteins was localized to a CC-rich region in the proximal ECE-1 3' UTR base pairs (the 56-kDa protein) and to a region between 60 and 193 base pairs in the ECE-1 3' UTR mRNA (62 kDa). A functional role for the 3' UTR mRNA/protein interaction was established in a series of reporter assays. Additionally, transforming growth factor-beta1, a cytokine integral to wound healing, stimulated ET-1 production. This effect was due to ECE-1 mRNA stabilization and increased ECE-1 expression in stellate cells, which in turn was a result of de novo synthesis of the identified 56- and 62-kDa ECE-1 3' UTR mRNA binding proteins. These data indicate that liver injury and the hepatic wound healing response lead to ECE-1 mRNA stabilization in stellate cells via binding of 56- and 62-kDa proteins, which in turn are regulated by transforming growth factor-beta. The possibility that the same or similar regulatory events are present in other forms of wound healing is raised.  相似文献   

14.
15.
The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of Sema3A is increased markedly in basal cells of the newly healed corneal epithelium, and that this up-regulation of Sema3A is not associated with cell proliferation. They further suggest that Sema3A might play a role in the regulation of corneal epithelial wound healing.  相似文献   

16.

Purpose

This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding.

Methods

Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs.

Results

The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining.

Conclusions

Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9 following corneal wounding are the lacrimal gland and CALT. Other sources included stromal keratocytes and conjunctiva with goblet cells.  相似文献   

17.
18.
The purpose of this study is to investigate the expression of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, during re-epithelialization in wounded corneas of vitamin A-deficient mice. Epithelial defects were created in the corneas of normal and Vitamin A-deficient mice with a microgrinder. Wounded corneas were stained with fluorescein and photographed for evaluation of re-epithelialization. Histological examination and immunohistochemical analysis of TSP-1 expression were also performed on the specimens from wounded corneas. In vitamin A-deficient mice, re-epithelialization of the wounded corneal epithelium was significantly delayed compared with that in normal mice. TSP-1 was detectable neither in the unwounded corneal epithelium of normal mice nor in that of vitamin A-deficient mice. In normal mice, linear staining of TSP-1 was observed on the wounded corneal surface and stroma at 30 min and 8 h to 16 h, respectively, after abrasion, and this TSP-1 expression disappeared at 36 to 48 h, when re-epithelialization was completed. In contrast, no TSP-1 staining was observed in the wounded corneas of vitamin A-deficient mice, except for the endothelial cells, throughout the wound healing process. Histological examination revealed a progressive increase in polymorphonuclear neutrophil infiltration in the stroma of the corneas of vitamin A-deficient mice during the healing process. These findings suggest that vitamin A may modulate the expression of TSP-1 in the corneas to accelerate the re-epithelialization of wounded corneas.  相似文献   

19.
Wound healing is a complex and well-orchestrated biological process. Corneal epithelial cells (CECs) must respond quickly to trauma to rapidly restore barrier function and protect the eye from noxious agents. They express a high level of beta2-adrenergic receptors but their function is unknown. Here, we report the novel finding that they form part of a regulatory network in the corneal epithelium, capable of modulating corneal epithelial wound repair. Beta-adrenergic receptor agonists delay CEC migration via a protein phosphatase 2A-mediated mechanism and decrease both electric field-directed migration and corneal wound healing. Conversely, beta-adrenergic receptor antagonists accelerate CEC migration, enhance electric field-mediated directional migration, and promote corneal wound repair. We demonstrate that CECs express key enzymes required for epinephrine (beta-adrenergic receptor agonist) synthesis in the cytoplasm and can detect epinephrine in cell extracts. We propose that the mechanism for the pro-motogenic effect of the beta-adrenergic antagonist is blockade of the beta2-adrenergic receptor preventing autocrine catecholamine binding. Further investigation of this network will improve our understanding of one of the most frequently prescribed class of drugs.  相似文献   

20.
One important action of growth factors is their participation in tissue repair; however, the signaling pathways involved are poorly understood. In a model of corneal wound healing, we found that two paracrine growth factors, hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF), induced rapid and marked activation and prompt nuclear accumulation of phospho-p38 (p-p38) and -ERK1/2 (p-ERK1/2), but not of JNK (p-JNK1/2), in corneal epithelial cells. Interruption of p38 and ERK1/2 signaling pathways by pretreatment with inhibitors SB203580 and PD98059 and subsequent stimulation with HGF or KGF abolished the activation and nuclear localization. Inhibition of either one of these mitogen-activated protein kinases, p38 or ERK1/2, induced a robust cross-activation of the other. In immunofluorescence studies of wounded cornea, p-p38, unlike p-ERK1/2, was immediately detectable in epithelium after injury. Inhibition of p38 by SB203580 blocked migration of epithelial cells almost completely. In contrast, PD98059 seemed to slightly increase the migration, through concomitant activation of p38. Unlike ERK1/2, p38 did not significantly contribute to proliferation of epithelial cells. Inhibition of either the ERK1/2 or p38 pathway resulted in delayed corneal epithelial wound healing. Interruption of both signaling cascades additively inhibited the wound-healing process. These findings demonstrate that both p38 and ERK1/2 coordinate the dynamics of wound healing: while growth factor-stimulated p38 induces epithelial migration, ERK1/2 activation induces proliferation. The cross-talk between these two signal cascades and the selective action of p38 in migration appear to be important to corneal wound healing, and possibly wound healing in general, and may offer novel drug targets for tissue repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号