首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of gamma-secretase is a potential therapeutic target for Alzheimer's disease (AD). The present studies have characterized the in vitro properties of a radiolabeled small molecule gamma-secretase inhibitor, [3H]compound D (Yan et al., 2004, J. Neurosci.24, 2942-2952) in mammalian brain. [3H]Compound D was shown to bind with nanomolar affinity (Kd = 0.32-1.5 nM) to a single population of saturable sites in rat, rhesus and human brain cortex homogenates, the density of binding sites ranging from 4 to 7 nM across the species. Competition studies with a structurally diverse group of gamma-secretase inhibitors with a wide range of binding affinities showed that the binding affinities of these compounds correlated well with their ability to inhibit gamma-secretase in vitro. Autoradiographic studies showed that the specific binding of [3H]compound D was widely distributed throughout adult rat, rhesus and normal human brain. There did not appear to be any difference in distribution of [3H]compound D specific binding sites in AD cortex compared with control human cortex as measured using tissue section autoradiography, nor any correlation between gamma-secretase binding and plaque burden as measured immunohistochemically. [3H]compound D is a useful tool to probe the expression and pharmacology of gamma-secretase in mammalian brain.  相似文献   

2.
Growth hormone receptor (GHR) is a cytokine receptor superfamily member that binds growth hormone (GH) via its extracellular domain and signals via interaction of its cytoplasmic domain with JAK2 and other signaling molecules. GHR is a target for inducible metalloprotease-mediated cleavage in its perimembranous extracellular domain, a process that liberates the extracellular domain as the soluble GH-binding protein and leaves behind a cell-associated GHR remnant protein containing the transmembrane and cytoplasmic domains. GHR metalloproteolysis can be catalyzed by tumor necrosis factor-alpha-converting enzyme (ADAM-17) and is associated with down-modulation of GH signaling. We now study the fate of the GHR remnant protein. By anti-GHR cytoplasmic domain immunoblotting, we observed that the remnant induced in response to phorbol ester or platelet-derived growth factor has a reliable pattern of appearance and disappearance in both mouse preadipocytes endogenously expressing GHR and transfected fibroblasts expressing rabbit GHR. Lactacystin, a specific proteasome inhibitor, did not appreciably change the time course of remnant appearance or clearance but allowed detection of the GHR stub, a receptor fragment slightly smaller than the remnant but containing the C terminus of the remnant (receptor cytoplasmic domain). In contrast, MG132, another (less specific) proteasome inhibitor, strongly inhibited remnant clearance and prevented stub appearance. Inhibitors of gamma-secretase, an aspartyl protease, also prevented the appearance of the stub, even in the presence of lactacystin, and concomitantly inhibited remnant clearance in the same fashion as MG132. In addition, mouse embryonic fibroblasts derived from presenilin 1 and 2 (PS1/2) knockouts recapitulated the gamma-secretase inhibitor studies, as compared with their littermate controls (PS1/2 wild type). Confocal microscopy indicated that the GHR cytoplasmic domain became localized to the nucleus in a fashion dependent on PS1/2 activity. These data indicate that the GHR is subject to sequential proteolysis by metalloprotease and gamma-secretase activities and may suggest GH-independent roles for the GHR.  相似文献   

3.
γ-Secretase is composed of at least four transmembrane proteins, presenilin (PS) 1/2, nicastrin, anterior pharynx-1 (Aph-1) and presenilin enhancer-2 (Pen-2), and cleaves amyloid precursor protein (APP) to produce amyloid β peptides (Aβ) that is deposited in the brains of Alzheimer disease. However, the mechanism of γ-secretase-mediated cleavage remains unclear. To examine the enzymatic properties of γ-secretase, we established an in vitro assay system using Saccharomyces cerevisiae, which does not possess homologs of human PS1/2, nicastrin, Aph-1, or Pen-2. We transformed these subunits and the substrate in pep4Δ cells with vacuole proteases inactivated, and microsome was isolated for in vitro assay. In the assay, Aβ40, Aβ42, and Aβ43 were produced with an optimal pH of ∼7.0. We also detected Aβ-production by yeast endogenous protease(s), which was abolished by the addition of phosphatidyl choline. This novel system will facilitate the analysis of substrate recognition by γ-secretase.  相似文献   

4.
Gamma-secretase is a member of an unusual class of proteases with intramembrane catalytic sites. This enzyme cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Biochemical and genetic studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin (PS) composed of its N- and C-terminal fragments (PS-NTF/CTF), a mature glycosylated form of nicastrin (NCT), Aph-1, and Pen-2. Recent data from studies in Drosophila, mammalian, and yeast cells suggest that PS, NCT, Aph-1, and Pen-2 are necessary and sufficient to reconstitute gamma-secretase activity. However, many unresolved issues, in particular the possibility of other structural or regulatory components, would be resolved by actually purifying the enzyme. Here, we report a detailed, multistep purification procedure for active gamma-secretase and an initial characterization of the purified protease. Extensive mass spectrometry of the purified proteins strongly suggests that PS-NTF/CTF, mNCT, Aph-1, and Pen-2 are the components of active gamma-secretase. Using the purified gamma-secretase, we describe factors that modulate the production of specific Abeta species: (1) phosphatidylcholine and sphingomyelin dramatically improve activity without changing cleavage specificity within an APP substrate; (2) increasing CHAPSO concentrations from 0.1 to 0.25% yields a approximately 100% increase in Abeta42 production; (3) exposure of an APP-based recombinant substrate to 0.5% SDS modulates cleavage specificity from a disease-mimicking pattern (high Abeta42/43) to a physiological pattern (high Abeta40); and (4) sulindac sulfide directly and preferentially decreases Abeta42 cleavage within the purified complex. Taken together, our results define a procedure for purifying active gamma-secretase and suggest that the lipid-mediated conformation of both enzyme and substrate regulate the production of the potentially neurotoxic Abeta42 and Abeta43 peptides.  相似文献   

5.
Limited reduction of a mixture of purified human fibrinogen and human serum albumin leads to the formation of a stable complex. This complex is clottable with thrombin, but its electrophoretic mobility is lower than that of fibrinogen. By contrast to clots prepared from purified fibrinogen, those obtained from the complex are transparent and are completely resistant to fibrinolytic degradation induced with urokinase. In this respect the complex of fibrinogen with albumin is similar to that identified in congenitally abnormal fibrinogens.  相似文献   

6.
This study demonstrates rapid and pH-sensitive release of a highly water-soluble fluorescent aqueous content marker, pyranine, from egg phosphatidylcholine liposomes following incorporation of N-isopropylacrylamide (NIPA) copolymers in liposomal membranes. The pH-sensitivity of this system correlates with the precipitation of the copolymers at acidic pH. In vitro release can be significantly improved by increasing the percentage of anchor in the copolymer and thus favoring its binding to the liposomal bilayer. In the case of liposomes containing a poly(ethylene glycol)-phospholipid conjugate, the insertion of the pH-sensitive copolymer in the liposomal membrane appears to be sterically inhibited. Dye release from these formulations at acidic pH can still be achieved by varying the anchor molar ratio and/or molecular mass of the polymers or by including the latter during the liposome preparation procedure. Removal of unbound polymer results in decreased leakage only when the copolymer is inserted by incubation with preformed liposomes, but can be overcome by preparing liposomes in the presence of polymer. Aqueous content and lipid mixing assays suggest contents release can occur without membrane fusion. The results of this study indicate that the addition of pH-sensitive copolymers of NIPA represents promising strategy for improving liposomal drug delivery.  相似文献   

7.
Structural characterization of a guanine-quadruplex ligand complex   总被引:10,自引:0,他引:10  
Read MA  Neidle S 《Biochemistry》2000,39(44):13422-13432
The inhibition of telomerase by molecules such as disubstituted amidoanthraquinones is believed to be due to their stabilization of guanine-quadruplex complexes. The characterization is reported of a complex with the intermolecular parallel quadruplex formed from the sequence TGGGGT and a 1,4-bis-piperidino amidoanthraquinone. Crystals obtained did not give single-crystal diffraction; the fiber-like pattern has been interpreted in terms of a repeating unit with four guanine-quartets and two stacked/intercalated ligand molecules. The two categories of possible structures for the complex consistent with this interpretation have been examined by molecular dynamics simulations, with fully solvated environments and 1000 ps simulation times. The two central guanine-quartets in the intercalation model rapidly became highly distorted, whereas the two types of models with ligand stacked externally on the ends of the quadruplex remained very stable. It was concluded that the externally bound ligand complexes best represent the structure of this quadruplex complex, in agreement with earlier NMR results on related systems.  相似文献   

8.
Plant Sucrose non-Fermenting 1-Related Protein Kinase1 (SnRK1) complexes are members of the Snf1/AMPK/SnRK protein kinase family and play important roles in many aspects of metabolism. In tomato (Solanum lycopersicum, Sl), only one α-subunit of the SnRK1 complex, SlSnRK1.1, has been characterized to date. In this study, the phylogenetic placement and in vitro kinase activity of a second tomato SnRK1 α-subunit, SlSnRK1.2, were characterized. Interestingly, in the phylogenetic analysis of SnRK1 sequences from monocots and dicots SlSnRK1.2 clusters only with other Solanaceae SnRK1.2 sequences, suggesting possible functional divergence of these kinases from other SnRK1 kinases. For analysis of kinase activity, SlSnRK1.2 was able to autophosphorylate, phosphorylate the complex β-subunits, and phosphorylate the SnRK1 AMARA peptide substrate, all with drastically lower overall kinase activity compared to SlSnRK1.1. Activation by the upstream kinase SlSnAK was able to increase the kinase activity of both SlSnRK1.1 and SlSnRK1.2, although the increase is less dramatic for SlSnRK1.2. The highest kinase activity on the AMARA peptide for SlSnRK1.2 was seen when reconstituting the complex in vitro with SlSip1 as the β-subunit. In comparison, SlSnRK1.1 showed the lowest kinase activity on the AMARA peptide when SlSip1 was used. These studies suggest the SlSnRK1.2 phylogenetic divergence and lower SlSnRK1.2 kinase activity compared to SlSnRK1.1 may be indicative of different in vivo roles for each kinase.  相似文献   

9.
By repeatedly introducing hydrophilic polyethylene glycol (PEG) spacer (2) onto affinity resin bearing a bioactive peptide (1/2 secretory leukocyte protease inhibitor, 1/2SLPI) as a ligand, the adsorption of nonspecific binding proteins was effectively reduced and the purification efficacy of elastase, which is one of the target molecules for 1/2SLPI, from a protein mixture was improved. Moreover, using this resin, we also successfully detected L-plastin, as an endogenous target molecule for SLPI, from HL-60 cell lysate.  相似文献   

10.
Gamma-secretase belongs to an atypical class of aspartic proteases that hydrolyzes peptide bonds within the transmembrane domain of substrates, including amyloid-beta precursor protein and Notch. gamma-Secretase is comprised of presenilin, nicastrin, APH-1, and PEN-2 which form a large multimeric membrane protein complex, the three-dimensional structure of which is unknown. To gain insight into the structure of this complex enzyme, we purified functional gamma-secretase complex reconstituted in Sf9 cells and analyzed it using negative stain electron microscopy and 3D reconstruction techniques. Analysis of 2341 negatively stained particle images resulted in the three-dimensional representation of gamma-secretase at a resolution of 48 angstroms. The structure occupies a volume of 560 x 320 x 240 angstroms and resembles a flat heart comprised of two oppositely faced, dimpled domains. A low density space containing multiple pores resides between the domains. Some of the dimples in the putative transmembrane region may house the catalytic site. The large dimensions are consistent with the observation that gamma-secretase activity resides within a high molecular weight complex.  相似文献   

11.
Human thiopurine S-methyltransferase (TPMT) is an enzyme responsible for the detoxification of widely used thiopurine drugs such as azathioprine (Aza). Its activity is inversely related to the risk of developing severe hematopoietic toxicity in certain patients treated with standard doses of thiopurines. DNA samples from four leucopenic patients treated with Aza were screened by PCR-SSCP analysis for mutations in the 10 exons of the TPMT gene. Four missense mutations comprising two novel mutations, A83T (TPMT*13, Glu(28)Val) and C374T (TPMT*12, Ser(125)Leu), and two previously described mutations, G430C (TPMT*10, Gly(144)Arg) and T681G (TPMT*7, His(227)Gln) were identified. Using a recombinant yeast expression system, kinetic parameters (K(m) and V(max)) of 6-thioguanine S-methylation of the four TPMT variants were determined and compared to those obtained with wild-type TPMT. This functional analysis suggests that these rare allelic variants are defective TPMT alleles. The His(227)Gln variant retained only 10% of the intrinsic clearance value (V(max)/K(m) ratio) of the wild-type enzyme. The Ser(125)Leu and Gly(144)Arg variants were associated with a significant decrease in intrinsic clearance values, retaining about 30% of the wild-type enzyme, whereas the Glu(28)Val variant produced a more modest decrease (57% of the wild-type enzyme). The data suggest that the sporadic contribution of the rare Glu(28)Val, Ser(125)Leu, Gly(144)Arg, and His(227)Gln variants may account for the occurrence of altered metabolism of TPMT substrates. These findings improve our knowledge of the genetic basis of interindividual variability in TPMT activity and would enhance the efficiency of genotyping methods to predict patients at risk of inadequate responses to thiopurine therapy.  相似文献   

12.
Since the development of affinity chromatography, affinity purification technology has been applied to many aspects of biological research, becoming an indispensable tool. Efficient strategies for the identification of biologically active compounds based on biochemical specificity have not yet been established, despite widespread interest in identifying chemicals that directly alter biomolecular functions. Here, we report a novel method for purifying chemicals that specifically interact with a target biomolecule using reverse affinity beads, a receptor-immobilized high-performance solid-phase matrix. When FK506-binding protein 12 (FKBP12) immobilized beads were used in this process, FK506 was efficiently purified in one step either from a mixture of chemical compounds or from fermented broth extract. The reverse affinity beads facilitated identification of drug/receptor complex binding proteins by reconstitution of immobilized ligand/receptor complexes on the beads. When FKBP12/FK506 and FKBP12/rapamycin complexes were immobilized, calcineurin and FKBP/rapamycin-associated protein were purified from a crude cell extract, respectively. These data indicate that reverse affinity beads are powerful tools for identification of both specific ligands and proteins that interact with receptor/ligand complexes.  相似文献   

13.
De Strooper B 《Cell》2005,122(3):318-320
The gamma-secretase intramembrane protease cleaves many type I membrane proteins including amyloid precursor protein and Notch, generating peptide fragments that are important signaling components. In this issue of Cell, Shah et al. (2005) reveal the function of nicastrin, the largest member of the gamma-secretase complex. They show that the nicastrin extracellular domain is essential for recognition of substrate by the gamma-secretase.  相似文献   

14.
A "low Km" cAMP phosphodiesterase with properties of a peripheral membrane protein accounts for approximately 90% of total cAMP phosphodiesterase activity in particulate (100,000 X g) fractions from rat fat cells. Incubation of fat cells with insulin for 10 min increased particulate (but not soluble) cAMP phosphodiesterase activity, with a maximum increase (approximately 100%) at 1 nM insulin. Most of the increase in activity was retained after solubilization (with non-ionic detergent and NaBr) and partial purification (approximately 20-fold) on DEAE-Sephacel. The solubilized enzyme from adipose tissue was purified approximately 65,000-fold to apparent homogeneity (yield approximately 20%) by chromatography on DEAE-Sephacel and Sephadex G-200 and affinity chromatography on aminoethyl agarose conjugated with the N-(2-isothiocyanato)ethyl derivative of the phosphodiesterase inhibitor cilostamide (OPC 3689). A 63,800 +/- 200-Da polypeptide (accounting for greater than 90% of the protein eluted from the affinity column) was identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate (with or without reduction). Enzyme activity was associated with the single protein band after electrophoresis under nondenaturing conditions. On gel permeation, Mr(app) was 100,000-110,000, suggesting that the holoenzyme is a dimer. A pI of 4.9-5.0 was estimated by isoelectric focusing. At 30 degrees C, the purified enzyme hydrolyzed both cAMP and cGMP with normal Michaelis-Menten kinetics; the pH optimum was 7.5. The Km(app) for cAMP was 0.38 microM and Vmax, 8.5 mumol/min/mg; for cGMP, Km(app) was 0.28 microM and Vmax, 2.0 mumol/min/mg. cGMP competitively inhibited cAMP hydrolysis with a Ki of approximately 0.15 microM. The enzyme was also inhibited by several OPC derivatives and "cardiotonic" drugs, but not by RO 20-1724. It was very sensitive to inhibition by agents which covalently modify protein sulfhydryls, but not by diisopropyl fluorophosphate. The activation by insulin and other findings indicate that the purified enzyme, which seems to belong to a subtype of low Km cAMP phosphodiesterases that is specifically and potently inhibited by cGMP, cilostamide, other OPC derivatives, and certain cardiotonic drugs, is likely to account for the hormone-sensitive particulate low Km cAMP phosphodiesterase activity of rat adipocytes.  相似文献   

15.
Recently, a new endogenous koala gammaretrovirus, designated KoRV, was isolated from koalas. The KoRV genome shares 78% nucleotide identity with another gammaretrovirus, gibbon ape leukemia virus (GALV). KoRV is endogenous in koalas, while GALV is exogenous, suggesting that KoRV predates GALV and that gibbons and koalas acquired the virus at different times from a common source. We have determined that subtle adaptive differences between the KoRV and GALV envelope genes account for differences in their receptor utilization properties. KoRV represents a unique example of a gammaretrovirus whose envelope has evolved to allow for its expanded host range and zoonotic potential.  相似文献   

16.
Immunoaffinity separation of large multivalent species such as viruses is limited by the stringent elution conditions necessary to overcome their strong and highly avid interaction with immobilized affinity ligands on the capture surface. Here we present an alternate strategy that harnesses the avidity effect to overcome this limitation. Red clover necrotic mosaic virus (RCNMV), a plant virus relevant to drug delivery applications, was chosen as a model target for this study. An RCNMV binding protein (RBP) with modest binding affinity (KD ~100 nM) was generated through mutagenesis of the Sso7d protein from Sulfolobus solfataricus and used as the affinity ligand. In our separation scheme, RCNMV is captured by a highly avid interaction with RBP immobilized on a nickel surface through a hexahistidine (6xHis) tag. Subsequently, disruption of the multivalent interaction and release of RCNMV is achieved by elution of RBP from the nickel surface. Finally, RCNMV is separated from RBP by exploiting the large difference in their molecular weights (~8 MDa vs. ~10 kDa). Our strategy not only eliminates the need for harsh elution conditions, but also bypasses chemical conjugation of the affinity ligand to the capture surface. Stable non‐antibody affinity ligands to a wide spectrum of targets can be generated through mutagenesis of Sso7d and other hyperthermophilic proteins. Therefore, our approach may be broadly relevant to cases where capture of large multivalent species from complex mixtures and subsequent release without the use of harsh elution conditions is necessary. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

17.
A ribosome display from a diverse random library was applied for selecting peptide aptamers with high binding affinity to single-wall carbon nanotubes (SWCNTs). The selected peptide aptamer bound to and solubilized SWCNTs more strongly than did the peptide aptamer selected by a phage display method reported previously, and more strongly than other commonly used organic surfactants. The fluorescence spectrum of this aptamer showed a red shift upon interaction with SWCNTs but circular dichroism spectroscopy did not show any significant difference between the presence or absence of SWCNT binding.  相似文献   

18.
The use of genetically encoded small peptide tags such as polyhistidine and tetracysteine tags has become important for protein purification and enrichment. An improved affinity purification of tetracysteine (CCXXCC) tagged proteins has been achieved using a nonfluorescent, photochemically stable bisarsenical affinity ligand SplAsH. The photochemical stability of the SplAsH-biotin, shown in compound 5, is superior to FlAsH-EDT(2) and ReAsH-EDT(2). An application of the SplAsH tag for affinity purification of tetracysteine-tagged proteins is reported.  相似文献   

19.
We established a novel in vitro method, termed the root recovery assay, to evaluate the survival under osmotic stress of lettuce (Lactuca sativa L.) seedlings. Under salinity and drought stress, combination of the root-bending assay and root recovery assay showed the same trends in dry weight and survival rate as a hydroponic culture. Both in vitro assays and hydroponics ranked the three lettuce cultivars in the same order of drought tolerance. The root-bending assay evaluated the plant’s growth and the root recovery assay indicated the plant’s survival. In addition, the combined assay required less space and approximately half the time period compared with the hydroponic culture. These results suggested that application of the root-bending and root recovery assay should be a rapid and space-saving method with which to evaluate the osmotic stress tolerance of lettuce from both growth and survival standpoints. Hideki Maruyama and Ryohei Koyama contributed equally to this work.  相似文献   

20.
A vasopressin receptor was purified, using a novel affinity column, from rat liver plasma membranes treated with guanosine 5'-(3-O-thio)triphosphate and solubilized with 0.8% cholate. Incubation of the membranes with the GTP analogue resulted in a dissociation of the receptor-guanine nucleotide regulatory protein complex. This manipulation, although resulting in a low-affinity state of the receptor, facilitated purification. The solubilized receptor was assayed using a new reconstitution procedure in which the soluble extracts were inserted into lipid vesicles composed of phosphatidylcholine and phosphatidylinositol. The receptor was purified by sequential chromatography on Q-Sepharose and hydroxyapatite. The use of a novel affinity column, a V1-vasopressin antagonist-agarose, resulted in a near-homogeneous preparation of a protein which exhibited an Mr = 58,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of purified receptor, as well as crude membrane preparations cross-linked to [125I]arginine vasopressin, also revealed a protein band with an approximate Mr = 58,000. These findings indicate that V1-antagonist affinity chromatography should be useful for purifying adequate amounts of the receptor for studies of structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号