首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunoglobulin (Ig) A represents the predominant antibody isotype produced at the intestinal mucosa, where it plays an important role in limiting the penetration of commensal intestinal bacteria and opportunistic pathogens. We show in mice that Peyer''s Patch-derived dendritic cells (PP-DC) exhibit a specialized phenotype allowing the promotion of IgA production by B2 cells. This phenotype included increased expression of the retinaldehyde dehydrogenase 1 (RALDH1), inducible nitric oxide synthase (iNOS), B cell activating factor of the tumor necrosis family (BAFF), a proliferation-inducing ligand (APRIL), and receptors for the neuropeptide vasoactive intestinal peptide (VIP). The ability of PP-DC to promote anti-CD40 dependent IgA was partially dependent on retinoic acid (RA) and transforming growth factor (TGF)-β, whilst BAFF and APRIL signaling were not required. Signals delivered by BAFF and APRIL were crucial for CD40 independent IgA production, although the contribution of B2 cells to this pathway was minimal. The unique ability of PP-DC to instruct naïve B cells to differentiate into IgA producing plasma cells was mainly imparted by the presence of intestinal commensal bacteria, and could be mimicked by the addition of LPS to the culture. These data indicate that exposure to pathogen-associated molecular patterns present on intestinal commensal bacteria condition DC to express a unique molecular footprint that in turn allows them to promote IgA production.  相似文献   

2.
Cesarean-derived piglets were reared for 5 wk under germfree conditions or monoassociated with a benign Escherichia coli (G58-1) or a enterohemorrhagic strain (933D) derived from O157:H7, and immunized i.p. with the T-dependent (TD) Ags fluorescein-labeled (FL) keyhole limpet hemocyanin or trinitrophenylated (TNP) keyhole limpet hemocyanin and the type 2 T-independent Ags TNP-Ficoll or FL-Ficoll. Only colonized piglets showed an increase in serum IgG, IgA, and IgM and had serum Abs to FL, TNP, and colonizing bacteria. While serum Abs to FL or TNP appeared following colonization alone, secondary responses were restricted to piglets immunized using TD carriers. While animals colonized with 933D had significantly higher total serum IgG and IgM levels and specific IgG Abs than those colonized with G58-1, no differences were seen in serum IgA levels, B cell diversification in the ileal Peyer's patches, and specific activity (ELISA activity per micrograms of Ig) of pre-boost serum IgG and IgM anti-TNP and anti-FL Abs. Serum IgA Abs to TNP, FL, or bacteria were not detected. Ag-driven responses, as measured by an increase in specific Ab activity, were only observed in secondary responses to TD Ags and to colonizing, pathogenic E. coli. We propose that germline-encoded, isotype-switched B cells in newborn piglets differentiate to Ab-secreting cells 1) after stimulation by bacteria-activated APCs or 2) through direct stimulation by bacterial products. We further propose that Ag-driven systemic responses require both bacterial colonization and TD Ags translocated to the peritoneum.  相似文献   

3.
The capacity of a pure culture of anaerobic intestinal bacteria to influence the host's cellular and humoral immune systems was investigated with germfree, monoassociated, and conventionally reared rats. Monoassociation of germfree rats with Bacteroides fragilis stimulated the production of serum gamma globulin, agglutinating antibodies, and an apparent IgG (immunoelectrophoresis) band. A comparison of the in vitro blastogenic potential of lymphocytes (spleen cells and mesenteric lymph node cells) from germfree, monoassociated, and conventionally reared rats indicated the following: (1) the microbial flora had no obvious effect on the capacity of nonstimulated lymphocytes to incorporate [3H]thymidine; (2) spleen cells from conventionally reared rats responded to phytohemagglutinin, concanavalin A, or pokeweed mitogen better than splenocytes from germfree rats; (3) colonization of germfree rats with Fusobacterium necrophorum increased the responsiveness of splenocytes to photohemagglutinin and concanavalin A; and (4) monoassociation of germfree rats with B. fragilis, but not with F. necrophorum or propionibacterium acnes, increased splenocyte blastogenesis to homologous (i.e., colonizing) bacterial antigens. This study indicated that some intestinal bacteria can modulate the immune status of the host; the extent and nature of this modulation depended on the particular species of colonizing bacteria.  相似文献   

4.
Gut commensal bacteria play important roles in the development and homeostasis of intestinal immunity. However, the role of gut commensals in intestinal ischemia/reperfusion (I/R) injury is unclear. To determine the roles of gut commensal bacteria in intestinal IR injury, we depleted gut microbiota with a broad-spectrum antibiotic cocktail and performed mesenteric I/R (M I/R). First, we confirmed that antibiotic treatment completely depleted gut commensal bacteria and diminished the size of secondary lymphoid tissues such as the Peyer's patches. We next found that antibiotic treatment attenuated intestinal injury following M I/R. Depletion of gut commensal bacteria reduced the expression of Toll-like receptor (TLR)2 and TLR4 in the intestine. Both are well-known receptors for gram-positive and -negative bacteria. Decreased expression of TLR2 and TLR4 led to the reduction of inflammatory mediators, such as TNF, IL-6, and cyclooxygenase-2. Intestinal I/R injury is initiated when natural antibodies recognize neo-antigens that are revealed on ischemic cells and activate the complement pathway. Thus we evaluated complement and immunoglobulin (Ig) deposition in the damaged intestine and found that antibiotic treatment decreased the deposition of both C3 and IgM. Interestingly, we also found that the deposition of IgA also increased in the intestine following M I/R compared with control mice and that antibiotic treatment decreased the deposition of IgA in the damaged intestine. These results suggest that depletion of gut commensal bacteria decreases B cells, Igs, and TLR expression in the intestine, inhibits complement activation, and attenuates intestinal inflammation and injury following M I/R.  相似文献   

5.
Immunoglobulin (Ig) response to different polyclonal B-cell activators was measured by ELISA in cell culture media of thymocytes, splenocytes and liver cells isolated from pig fetuses, 8-d-old germ-free piglets and conventionally reared pigs. Both in fetal and in postnatal life polyclonally stimulated lymphocytes were found to produce predominantly the IgM isotype; the first IgM formation was detected in 50-d-old fetal liver (gestation in pigs lasts 114 d). Surprisingly, 73-d-old fetal thymic cells were shown to be induced to Ig synthesis and secretion. In contrast to splenocytes of the same age, which secreted exclusively IgM, fetal thymocytes produced IgM, IgG and IgA. Polyclonally stimulated splenic cells as compared with thymic cells started to produce IgA later in fetal ontogeny, whereas the IgG response was not detectable in splenic cell culture media during the whole embryonal development and appeared only after birth. The earliest and the highest Ig stimulation was found after cultivation of lymphocytes withNocardia delipidated cell mitogen. Interestingly, the moderate stimulatory effect of 65-kDa heat shock protein (Hsp-65) in polyclonal IgM response of fetal splenocytes was observed. We showed that thymic B lymphocytes represent probably the first maturing B cell population detectable in fetal life, which is able to differentiate after polyclonal stimulation into IgM as well as IgA and IgG producing cells. Dedicated to Professor J. Šterzl on the occasion of his 70th birthday  相似文献   

6.
Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymphocytes. We have now used adoptive transfer studies to identify the cell types responsible for the generation of virus-specific Ab production by gut-associated lymphoid tissue (GALT) after i.m. immunization. Three days after i.m. immunization with rotavirus, cells obtained from the draining peripheral lymph nodes of donor mice were transferred into naive recipient mice. We found that intestinal lymphocytes produced rotavirus-specific Igs (IgM, IgA, and IgG) 2 wk after transfer of either unfractionated cells, or unfractionated cells rendered incapable of cellular division by mitomycin C treatment. Additional studies demonstrated that rotavirus-specific IgA, but not IgG, was produced by intestinal lymphocytes after transfer of purified B cells. Ig allotype analysis revealed that rotavirus-specific IgA was produced by intestinal B cells of recipient origin, suggesting that migration of Ag-presenting B cells from peripheral lymphoid tissues to GALT may contribute to the generation of mucosal IgA responses after parenteral immunization. Strategies that promote Ag uptake and presentation by B cells may enhance mucosal IgA production following parenteral immunization.  相似文献   

7.
A murine model of IgA deficiency has been established by targeted deletion of the IgA switch and constant regions in embryonic stem cells. B cells from IgA-deficient mice were incapable of producing IgA in vitro in response to TGF-beta. IgA-deficient mice expressed higher levels of IgM and IgG in serum and gastrointestinal secretions and decreased levels of IgE in serum and pulmonary secretions. Expression of IgG subclasses was complex, with the most consistent finding being an increase in IgG2b and a decrease in IgG3 in serum and secretions. No detectable IgA Abs were observed following mucosal immunization against influenza; however, compared with those in wild-type mice, increased levels of IgM Abs were seen in both serum and secretions. Development of lymphoid tissues as well as T and B lymphocyte function appeared normal otherwise. Peyer's patches in IgA-deficient mice were well developed with prominent germinal centers despite the absence of IgA in these germinal centers or intestinal lamina propria. Lymphocytes from IgA-deficient mice responded to T and B cell mitogens comparable to those of wild-type mice, while T cells from IgA-deficient mice produced comparable levels of IFN-gamma and IL-4 mRNA and protein. In conclusion, mice with targeted deletion of the IgA switch and constant regions are completely deficient in IgA and exhibit altered expression of other Ig isotypes, notably IgM, IgG2b, IgG3, and IgE, but otherwise have normal lymphocyte development, proliferative responses, and cytokine production.  相似文献   

8.
Moraxella IgD binding protein (MID) is a novel bacterial outer membrane protein with IgD-binding properties. MID was purified from the respiratory pathogen Moraxella catarrhalis and is here shown to have B cell stimulatory properties. Purified MID in the range of 0.01-0.1 microg/ml was optimal to induce a proliferative response in human PBL. MID coupled to Sepharose and formalin-fixed M. catarrhalis preparations induced similar proliferative responses in PBL cultures. MID or MID-Sepharose stimulated purified human peripheral B cells as measured by proliferation. In contrast, MID or MID-Sepharose did not activate T cells. Preincubation of purified B cells with anti-IgD Abs inhibited MID-Sepharose-induced B cell proliferation. The addition of IL-4 specifically induced IL-6 production in MID-Sepharose-activated B cells. IgM secretion was detected in B cell cultures stimulated with MID or MID-Sepharose and IL-2 for 10 days. Secretion of IgG and IgA was efficiently induced in cultures from purified B cells stimulated with the combination of MID or MID-Sepharose and IL-4, IL-10, and soluble CD40 ligand, suggesting that Th2-derived cytokines were required for optimal plasma cell generation. Taken together, MID has properties that make it an important tool to study IgD-targeted activation of B cells.  相似文献   

9.

Background and Aims

Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice.

Methodology/Principal Findings

HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-γ in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota.

Conclusion

Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-γ production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.  相似文献   

10.
Spores and parasporal crystals of a Bacillus thuringiensis serovar aizawai were fed to fifth instar larvae of the oriental tea tortrix, Homona magnanima, that had been reared aseptically or that had been reared normally. Viable cell numbers of B. thuringiensis and other bacteria in H. magnanima larvae were estimated by homogenization of samples and dilution plating on peptone-polymyxin agar medium for B. thuringiensis cells and on nutrient agar medium for the other bacterial cells. B. thuringiensis did not grow in the larval cadavers of normally reared H. magnanima while bacteria other than B. thuringiensis grew rapidly. In contrast, B. thuringiensis within the larval cadavers of aseptically reared H. magnanima grew and increased 20 times. The bacteria other than B. thuringiensis from the sample homogenates of normally reared larvae that were fed on B. thuringiensis-treated diets had the same characteristics as the bacteria isolated from the guts of healthy H. magnanima larvae, which were putatively identified as Streptococcus spp. and Staphylococcus spp., typical intestinal bacteria of insects. The results strongly suggest that intestinal bacteria influence the growth of B. thuringiensis in the larvae.  相似文献   

11.
Wang  Haifang  Shen  Xueying  Zheng  Xiaojiao  Pan  Ying  Zhang  Qin  Liu  Zhihua 《中国科学:生命科学英文版》2021,64(10):1720-1731
Commensal bacteria boost serum Ig G production in response to oral immunization with antigen and cholera toxin(CT) in a manner that depends on Nod2(nucleotide-binding oligomerization domain-containing protein 2). In this study, we examined the role of intestinal lysozyme(Lyz1) in adjuvant activity of CT. We found that Lyz1 released Nod2 ligand(s) from bacteria. Lyz1 deficiency reduced the level of circulating Nod2 ligand in mice. Lyz1 deficiency also reduced the production of Ig G and T-cellspecific cytokines after oral immunization in mice. Supplementing Lyz1-deficient mice with MDP restored Ig G production.Furthermore, overexpression of Lyz1 in intestinal epithelium boosted the antigen-specific Ig G response induced by CT. Collectively, our results indicate that Lyz1 plays an important role in mediating the immune regulatory effect of commensal bacteria through the release of Nod2 ligand(s).  相似文献   

12.
AIMS: To examine the efficacy of liposome oral administration to induce systemic and mucosal immune responses against verotoxin-producing Escherichia coli (VTEC) and the effect of the induced antibodies on the binding of the bacteria to Caco-2 cells. METHODS AND RESULTS: Mice were immunized orally with VTEC antigen and monophosphoryl lipid A (MPL)-containing liposomes composed of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylserine and cholesterol (1 : 1 : 2, molar ratio) (PS-liposome). After immunization, significant IgA and IgG responses to VTEC were induced in both serum and the intestinal lavage fluid in all mice tested. Furthermore, anti-VTEC IgA and IgG antibodies in the lavage fluid effectively inhibited the adhesion of VTEC to Caco-2 cells. CONCLUSIONS: Oral immunization with liposome-associated E. coli O157:H7 antigen can induce significant systemic and mucosal antibody responses against the bacterial antigen and antibodies produced in the intestinal tract, thus functioning as inhibitors for preventing VTEC infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Oral PS-liposome vaccines containing MPL have the potential usefulness for the induction of a protective mucosal immune response against intestinal diseases.  相似文献   

13.
14.
It is well established that Peyer's patches (PPs) are sites for the differentiation of IgA plasma cell precursors, but molecular and cellular mechanisms in their trafficking remain to be elucidated. In this study, we show that alterations in type 1 sphingosine 1-phosphate (S1P) receptor expression during B cell differentiation in the PPs control the emigration of IgA plasma cell precursors. Type 1 S1P receptor expression decreased during the differentiation of IgM(+)B220(+) B cells to IgA(+)B220(+) B cells, but recovered on IgA(+)B220(-) plasmablasts for their emigration from the PPs. Thus, IgA(+)B220(-) plasmablasts migrated in response to S1P in vitro. Additionally, IgA(+) plasmablasts selectively accumulated in lymphatic regions of PPs when S1P-mediated signaling was disrupted by FTY720 treatment. This accumulation of IgA(+) plasmablasts in the PPs led to their reduction in the intestinal lamina propria and simultaneous impairment of Ag-specific intestinal IgA production against orally administered Ag. These findings suggest that S1P regulates the retention and emigration of PP B cells and plays key roles in the induction of intestinal IgA production.  相似文献   

15.
Probiotic bacteria provide benefits in enhancing host immune responses and protecting against infection. Induction of IgA production by oral administration of probiotic bacteria in the intestine has been considered to be one reason for this beneficial effect, but the mechanisms of the effect are poorly understood. Lactobacillus gasseri SBT2055 (LG2055) is a probiotic bacterium with properties such as bile tolerance, ability to improve the intestinal environment, and it has preventive effects related to abdominal adiposity. In this study, we have found that oral administration of LG2055 induced IgA production and increased the rate of IgA+ cell population in Peyer''s patch and in the lamina propria of the mouse small intestine. The LG2055 markedly increased the amount of IgA in a co-culture of B cells and bone marrow derived dendritic cells (BMDC), and TLR2 signal is critical for it. In addition, it is demonstrated that LG2055 stimulates BMDC to promote the production of TGF-β, BAFF, IL-6, and IL-10, all critical for IgA production from B cells. Combined stimulation of B cells with BAFF and LG2055 enhanced the induction of IgA production. Further, TGF-β signal was shown to be critical for LG2055-induced IgA production in the B cell and BMDC co-culture system, but TGF-β did not induce IgA production in a culture of only B cells stimulated with LG2055. Furthermore, TGF-β was critical for the production of BAFF, IL-6, IL-10, and TGF-β itself from LG2055-stimulated BMDC. These results demonstrate that TGF-β was produced by BMDC stimulated with LG2055 and it has an autocrine/paracrine function essential for BMDC to induce the production of BAFF, IL-6, and IL-10.  相似文献   

16.
Encapsulated Bifidobacterium bifidum potentiates intestinal IgA production   总被引:4,自引:0,他引:4  
We asked whether Bifidobacterium bifidum regulates the synthesis of IgA by mucosal lymphoid cells. B. bifidum alone, but not Clostridium perfringens, significantly induced total IgA and IgM synthesis by both mesenteric lymph nodes (MLN) and Peyer's patch (PP) cells. We, further, investigated the mucosal antibody production following peroral administration of B. bifidum to mice. Ingested B. bifidum significantly increased the number of Ig (IgM, IgG, and IgA) secreting cells in the culture of both MLN and spleen cells. Nonetheless, B. bifidum itself does not induce the own specific antibody responses, implying that B. bifidum does not provoke unnecessary immune reaction. Subsequently, it was found that encapsulation of B. bifidum further augments the total IgA production in the culture of both MLN and spleen cells. Finally, we found that the immuno-stimulating activity of B. bifidum is due to its cellular components but not due to any actively secreting component(s) from bacteria.  相似文献   

17.
The resident prokaryotic microflora of the mammalian intestine influences diverse homeostatic functions of the gut, including regulation of cellular growth and immune responses; however, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. We have shown that bacterial coculture with intestinal epithelial cells modulates ubiquitin-mediated degradation of important signaling intermediates, including beta-catenin and the NF-kappaB inhibitor IkappaB-alpha. Ubiquitination of these proteins as well as others is catalyzed by the SCF(betaTrCP) ubiquitin ligase, which itself requires regulated modification of the cullin-1 subunit by the ubiquitin-like protein NEDD8. Here we show that epithelia contacted by enteric commensal bacteria in vitro and in vivo rapidly generate reactive oxygen species (ROS). Bacterially induced ROS causes oxidative inactivation of the catalytic cysteine residue of Ubc12, the NEDD8-conjugating enzyme, resulting in complete but transient loss of cullin-1 neddylation and consequent effects on NF-kappaB and beta-catenin signaling. Our results demonstrate that commensal bacteria directly modulate a critical control point of the ubiquitin-proteasome system, and suggest how enteric commensal bacterial flora influences the regulatory pathways of the mammalian intestinal epithelia.  相似文献   

18.
Trillions of commensal bacteria cohabit our bodies to mutual benefit. In the past several years, it has become clear that the adaptive immune system is not ignorant of intestinal commensal bacteria, but is constantly interacting with them. For T cells, the response to commensal bacteria does not appear uniform, as certain commensal bacterial species appear to trigger effector T cells to reject and control them, whereas other species elicit Foxp3+ regulatory T (Treg) cells to accept and be tolerant of them. Here, we review our current knowledge of T cell differentiation in response to commensal bacteria, and how this process leads to immune homeostasis in the intestine.  相似文献   

19.
Goodrich ME  McGee DW 《Cytokine》1998,10(12):948-955
Intestinal epithelial cells (IEC) secrete a variety of cytokines and, because of their close proximity to B cells in the lamina propria, may affect local antibody production via these cytokines. However, studies have not yet addressed which and to what extent these IEC-derived cytokines may affect B cell antibody production. In this study, rat mesenteric lymph node B cells were cultured with culture supernatants from the rat IEC-6 intestinal epithelial cell line to determine their effect on immunoglobulin (Ig) secretion. Unstimulated IEC-6 cells were found to secrete sufficient levels of IL-6 to enhance IgA, IgG and IgM secretion by unstimulated B cells. However, culture of lipopolysaccharide (LPS)-stimulated B cells with the unstimulated IEC-6 supernatant resulted in an enhancement of IgA secretion while IgM secretion was significantly suppressed. Depletion of the IEC-6 supernatant using cytokine specific antibodies revealed that both interleukin 6 (IL-6) and transforming growth factor beta (TGF-beta) were responsible for the enhanced IgA secretion while TGF-beta suppressed IgM secretion. More importantly, culture supernatants from LPS stimulated IEC-6 cells contained enhanced levels of IL-6 which enhanced both IgG and IgA production and partially overcame the suppressive effect of TGF-beta on IgM secretion. These results suggest that intestinal epithelial cells may secrete IL-6 and TGF-beta to regulate local B cell antibody secretion and their effect may be highly dependent upon the activation state of the epithelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号