首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following activation by ligand, most G protein-coupled receptors undergo rapid phosphorylation. This is accompanied by a drastic decrease in the efficacy of continued or repeated stimulation, due to receptor uncoupling from G protein and receptor internalization. Such processing steps have been shown to be absolutely dependent on receptor phosphorylation in the case of the N-formyl peptide receptor (FPR). In this study, we report results that indicate that the mechanisms responsible for desensitization and internalization are distinct. Using site-directed mutagenesis of the serine and threonine residues of the FPR carboxyl terminus, we have characterized regions that differentially regulate these two processes. Whereas substitution of all 11 Ser/Thr residues in the carboxyl terminus prevents both desensitization and internalization, substitution of four Ser/Thr residues between 328-332 blocks desensitization but has no effect on internalization. Similarly, substitution of four Ser/Thr residues between positions 334 and 339 results in a deficit in desensitization but again no decrease in internalization, suggesting that phosphorylation at either site evokes receptor internalization, whereas maximal desensitization requires phosphorylation at both sites. These results also indicate that receptor internalization is not involved in the process of desensitization. Further analysis of the residues between 328-332 revealed that restoration either of Ser(328) and Thr(329) or of Thr(331) and Ser(332) was sufficient to restore desensitization, suggesting that phosphorylation within either of these two sites, in addition to sites between residues 334 and 339, is sufficient to produce desensitization. Taken together, these results indicate that the mechanisms involved in FPR processing (uncoupling from G proteins and internalization) are regulated differentially by phosphorylation at distinct sites within the carboxyl terminus of the FPR. The relevance of this paradigm to other G protein-coupled receptors is discussed.  相似文献   

2.
Incubation of human astrocytoma cells (1321N1) with low concentrations of isoproterenol results in a specific loss of responsiveness to catecholamines as evidenced by a decreased accumulation of cAMP in intact cells, a reduction in isoproterenol-stimulated adenylate cyclase activity, and a decrease in beta-adrenergic receptor density, as measured by the specific binding of 125I-hydroxybenzylpindolol. The kinetics of desensitization suggest the involvement of two different reactions. The initial reaction involves a rapid loss of adenylate cyclase activity with little loss of beta-adrenergic receptors. Subsequently, a slower reaction results in the loss of measurable beta-adrenergic receptors. The degree of loss of both parameters was similar after 24 h of desensitization. It is concluded that the loss of beta-adrenergic receptors is an event that occurs as a result of the initial uncoupling of the beta-receptor-linked adenylate cyclase.  相似文献   

3.
The ligand-induced internalization of beta-adrenergic receptors and the receptor-mediated internalization of epidermal growth factor were blocked, under similar conditions, by phenylarsine oxide (PAO) in human astrocytoma cells (1321N1). The inhibition was not prevented or reversed by monofunctional sulfhydryl agents such as 2-mercaptoethanol or glutathione; however, the inhibitory action of PAO was blocked and reversed by bifunctional thiols such as 2,3-dimercaptoethanol or dithiothreitol. The results are consistent with the interaction of PAO with vicinal sulfhydryl groups to form a stabile ring structure. PAO did not prevent isoproterenol-induced uncoupling (desensitization) of beta-adrenergic receptors even though receptor internalization was completely blocked. The effects of PAO on receptor internalization could not be explained by any action of the trivalent arsenical to lower ATP levels. Ligand binding to both receptors was not detectably altered by PAO under conditions selective for inhibition for endocytosis. The results suggest a common mechanism for internalization of beta-adrenergic receptors and epidermal growth factor by a process that involves vicinal sulfhydryl groups.  相似文献   

4.
We have investigated the relationship between the catecholamine-induced occurrence in 1321N1 human astrocytoma cells of beta-adrenergic receptors that exhibit low apparent affinity for hydrophilic ligands in short-time assays with intact cells and a population of beta-adrenergic receptors that migrate in a light vesicle fraction on sucrose density gradients. Pretreatment of cells with concanavalin A prevents the generation of both of these forms of the receptor during incubation with agonists but does not prevent the agonist-induced decrease in isoproterenol-stimulated cyclic AMP production that also occurs during desensitization. Selective labeling of the low affinity beta-receptors with 125I-pindolol followed by centrifugation on sucrose density gradients revealed that all of the receptors in the light vesicle fraction from desensitized cells were of the low affinity type, but that a portion of the low affinity receptors also migrated in a heavier sucrose fraction together with the plasma membrane. In contrast, in control cells, no low affinity receptors were present in the heavy sucrose fractions. The agonist-induced occurrence of these various forms of the beta-adrenergic receptor can be explained on the basis of current models of desensitization involving agonist-induced internalization of beta-adrenergic receptors.  相似文献   

5.
Cyclic AMP accumulation in embryonic chick heart cells and binding of the beta-adrenergic antagonist 125I-pindolol to intact cells has been examined during the first 30 min of (-)-isoproterenol-induced desensitization. Myocardial beta-adrenergic receptors exist in two states which bind agonists with high (KD congruent to 10 nM) and low (KD congruent to 10 microM) affinities. Both activation and desensitization of cyclic AMP accumulation were mediated by (-)-isoproterenol binding to high affinity receptors. (-)-Isoproterenol-induced desensitization of cyclic AMP accumulation occurred with a t1/2 of 3.8 min. Desensitization was accompanied by a decrease in the number of 125I-pindolol binding sites assessed by equilibrium radioligand binding assays conducted at 4 degrees C or short (80 s) binding assays conducted at 37 degrees C. There was an excellent temporal correlation between loss of binding and loss of (-)-isoproterenol-stimulated cyclic AMP accumulation. After (-)-isoproterenol-induced desensitization, most of the remaining receptors assayed at 4 degrees C bound (-)-isoproterenol with high affinity. A rapid (-)-isoproterenol-induced decrease in the number of 125I-pindolol binding sites also occurred in adult canine heart cells and rat adipocytes. The data suggest that agonists do not cause uncoupling of surface receptors. Receptors may be uncoupled as a consequence of rapid sequestration into a hydrophobic compartment.  相似文献   

6.
C Senault  V Le Comte  R Portet 《Biochimie》1984,66(7-8):573-578
In relation to decreased metabolic sensitivity to catecholamines observed, in vitro, in brown fat of cold-acclimated rats, beta-adrenergic receptors were studied in isolated cells and in a crude membrane preparation from rat interscapular brown adipose tissue. [3H] dihydroalprenolol binding had the same characteristics in both types of preparation; competition studies of [3H] dihydroalprenolol binding led to the characterization of beta 1 subtype adrenergic receptors with a lower affinity of beta-adrenergic agonists for [3H] dihydroalprenolol binding sites in membranes than that found in isolated cells. Cold acclimation produced, in isolated cells only, a decrease of 41% in the [3H] dihydroalprenolol binding sites and a beta-adrenergic agonist affinity increase. It is concluded that beta-adrenergic receptor decrease could be a factor, at the hormone receptor interaction level, in the regulation of the transmission of biological action responsible for the cold-induced decrease in catecholamine responsiveness in brown adipose tissue. For a study of the desensitization process in brown fat, isolated cells seem to offer certain advantages over a crude membrane preparation.  相似文献   

7.
There is considerable evidence for the role of carboxyl-terminal serines 355, 356, and 364 in G protein-coupled receptor kinase (GRK)-mediated phosphorylation and desensitization of beta(2)-adrenergic receptors (beta(2)ARs). In this study we used receptors in which these serines were changed to alanines (SA3) or to aspartic acids (SD3) to determine the role of these sites in beta-arrestin-dependent beta(2)AR internalization and desensitization. Coupling efficiencies for epinephrine activation of adenylyl cyclase were similar in wild-type and mutant receptors, demonstrating that the SD3 mutant did not drive constitutive GRK desensitization. Treatment of wild-type and mutant receptors with 0.3 nm isoproterenol for 5 min induced approximately 2-fold increases in the EC(50) for agonist activation of adenylyl cyclase, consistent with protein kinase A (PKA) site-mediated desensitization. When exposed to 1 mum isoproterenol to trigger GRK site-mediated desensitization, only wild-type receptors showed significant further desensitization. Using a phospho site-specific antibody, we determined that there is no requirement for these GRK sites in PKA-mediated phosphorylation at high agonist concentration. The rates of agonist-induced internalization of the SD3 and SA3 mutants were 44 and 13%, respectively, relative to that of wild-type receptors, but the SD3 mutant recruited enhanced green fluorescent protein (EGFP)-beta-arrestin 2 to the plasma membrane, whereas the SA3 mutant did not. EGFP-beta-Arrestin2 overexpression triggered a significant increase in the extent of SD3 mutant desensitization but had no effect on the desensitization of wild-type receptors or the SA3 mutant. Expression of a phosphorylation-independent beta-arrestin 1 mutant (R169E) significantly rescued the internalization defect of the SA3 mutant but inhibited the phosphorylation of serines 355 and 356 in wild-type receptors. Our data demonstrate that (i) the lack of GRK sites does not impair PKA site phosphorylation, (ii) the SD3 mutation inhibits GRK-mediated desensitization although it supports some agonist-induced beta-arrestin binding and receptor internalization, and (iii) serines 355, 356, and 364 play a pivotal role in the GRK-mediated desensitization, beta-arrestin binding, and internalization of beta(2)ARs.  相似文献   

8.
Agonist-dependent desensitization of the beta-adrenergic receptor requires translocation and activation of the beta-adrenergic receptor kinase1 by liberated Gbetagamma subunits. Subsequent internalization of agonist-occupied receptors occurs as a result of the binding of beta-arrestin to the phosphorylated receptor followed by interaction with the AP2 adaptor and clathrin proteins. Receptor internalization is known to require D-3 phosphoinositides that are generated by the action of phosphoinositide 3-kinase. Phosphoinositide 3-kinases form a family of lipid kinases that couple signals via receptor tyrosine kinases and G-protein-coupled receptors. The molecular mechanism by which phosphoinositide 3-kinase acts to promote beta-adrenergic receptor internalization is not well understood. In the present investigation we demonstrate a novel finding that beta-adrenergic receptor kinase 1 and phosphoinositide 3-kinase form a cytosolic complex, which leads to beta-adrenergic receptor kinase 1-mediated translocation of phosphoinositide 3-kinase to the membrane in an agonist-dependent manner. Furthermore, agonist-induced translocation of phosphoinositide 3-kinase results in rapid interaction with the receptor, which is of functional importance, since inhibition of phosphoinositide 3-kinase activity attenuates beta-adrenergic receptor sequestration. Therefore, agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane is an important step in the process of receptor sequestration and links phosphoinositide 3-kinase to G-protein-coupled receptor activation and sequestration.  相似文献   

9.
Agonist-induced changes in beta-adrenergic receptors on intact cells   总被引:3,自引:0,他引:3  
Competition by beta-adrenergic agonists and antagonists for 125I-pindolol binding sites on intact cells (1321N1 human astrocytoma and C62B rat glioma) was measured using short time binding assays as previously described (Toews, M. L., Harden, T. K., and Perkins, J. P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3553-3557). Preincubation of cells with agonists converted about half of the cellular beta-adrenergic receptors from a form exhibiting high affinity for the agonists isoproterenol and epinephrine and the antagonist sotalol to a form exhibiting much lower apparent affinity for these ligands in short time assays. Exposure to agonists did not alter the affinity of receptors for the antagonist metoprolol. This change in the ligand binding properties of the receptor was rapid (t1/2 = 1-2 min following a lag of about 0.5 min), reversible (t1/2 = 6-8 min), and dependent on the agonist concentration present during the preincubation (K0.5 = 15 nM for isoproterenol). Both isoproterenol and sotalol attained equilibrium with the high affinity receptors very rapidly but equilibrated only slowly with those receptors exhibiting low apparent affinity in short time assays. These results are interpreted in terms of a model which postulates that both the low apparent affinity in short time assays and the subsequent slow equilibration of hydrophilic ligands with these receptors result from agonist-induced internalization of a fraction of cell surface beta-adrenergic receptors. The relationship of this change in receptor binding properties to other aspects of agonist-induced desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system is discussed.  相似文献   

10.
We recently demonstrated that heterologous desensitization of adenylate cyclase in turkey erythrocytes is highly correlated with phosphorylation of the beta-adrenergic receptor. In contrast, little is known of the biochemical mechanisms underlying the homologous form of beta-adrenergic receptor desensitization, which is agonist-specific and not cAMP-mediated. Accordingly, the present studies were undertaken to examine if phosphorylation of the beta-adrenergic receptor is also associated with this form of desensitization in a well studied model system, the frog erythrocyte. Preincubation of these cells with the beta-adrenergic agonist isoproterenol leads to a 45% decline in isoproterenol-stimulated adenylate cyclase activity without significant changes in basal, prostaglandin E1-, NaF-, guanyl-5'-yl-imidodiphosphate-, forskolin-, or MnCl2-stimulated enzyme activities. There is also a 48% decline in [125I]iodocyanopindolol membrane binding sites. Conversely, preincubation of the cells with prostaglandin E1 attenuates only the prostaglandin E1-stimulated enzyme activity and does not affect [125I]iodocyanopindolol binding. Phosphorylation of the beta-adrenergic receptor was assessed by preincubating the cells with 32Pi and desensitizing them, and subsequently purifying the receptors by affinity chromatography. Under basal conditions there is about 0.62 mol of phosphate/mol of receptor whereas after desensitization with isoproterenol this increases to 1.9 mol/mol. This isoproterenol-induced receptor phosphorylation exhibits stereospecificity and is blocked by the beta-adrenergic antagonist propranolol. In addition, preincubation with prostaglandin E1 does not promote beta-adrenergic receptor phosphorylation. These data suggest that receptor phosphorylation is involved in homologous as well as heterologous forms of desensitization and may provide a unifying mechanism for desensitization of adenylate cyclase-coupled hormone receptors.  相似文献   

11.
Abstract: The carboxy-terminal cytoplasmic regions of the rat neurokinin 1 (substance P) and neurokinin 2 (neurokinin A) receptors have been exchanged to determine if this region of the neurokinin 1 receptor is involved in its desensitization. When expressed at similar levels in stably transfected Chinese hamster ovary (CHO) cell lines, receptors containing the carboxy-terminal region of the neurokinin 1 receptor desensitized significantly more (as measured by reduction of the inositol 1,4,5-trisphosphate response) when preexposed for 1 min to 1 µ M neurokinin, indicating a role for the carboxy-terminal region of the neurokinin 1 receptor in its desensitization. Measurement of receptor internalization using radiolabeled neurokinins (0.3 n M ) indicated that ∼75–80% of the receptors were internalized in each cell line after 10 min at 37°C, with no observable correlation between neurokinin receptor desensitization and internalization. Measurement of loss of receptor surface sites for cell lines CHO NK1 and CHO NK1NK2 following exposure to 1 µ M substance P also indicated no obvious relationship between the percent desensitization and percent of receptors internalized. Also, two inhibitors of neurokinin 1 receptor internalization, phenylarsine oxide and hyperosmolar sucrose, did not inhibit neurokinin 1 receptor desensitization. The protein kinase inhibitors Ro 31-8220, staurosporine, and Zn2+ had no effect on neurokinin 1 receptor desensitization, indicating that the kinases affected by these agents are not rate-limiting in neurokinin 1 receptor desensitization in this system.  相似文献   

12.
When adipocyte membranes are successively exposed to (-)-propranolol or (+/- alprenolol at 25 or 4 degrees C, repeatedly washed and then assayed for (-)-[3H]dihydroalprenolol binding, the apparent number of beta-adrenergic binding sites is markedly decreased. Induction of this peculiar type of receptor desensitization does not require prolonged exposure of the membranes to the beta-adrenergic antagonists (half-time: 1 min), is stereospecific, concentration-dependent and almost complete with high concentrations of antagonists. p[NH]ppG, which reduces the affinity of fat cell beta-adrenergic receptors for agonists, does not prevent the antagonist-induced decrease in the receptor number. The magnitude of the desensitizating effect induced separately by (-)-isoproterenol and (-)-propranolol is not additive in membranes exposed to both drugs, suggesting that the receptors lost after exposure to agonists are the same sites as part of those lost after exposure to antagonists. However, contrary to the results found in membranes desensitized by agonists, adenylate cyclase activity remained fully responsive to catecholamines in membranes exposed to beta-antagonists. As shown by kinetic studies on (-)-[3H]dihydroalprenolol binding, this beta-antagonist-induced receptor desensitization is reversible after prolonged incubation. These data which have never yet been described in the other reported desensitizable beta-adrenergic systems, suggest that, when exposed to beta-antagonists, the fat cell beta-adrenergic receptors undergo a conformational change leading to a peculiar state which has low affinity for antagonists but behaves towards agonists as does the receptor in its resting state.  相似文献   

13.
Desensitization and internalization of G protein-coupled receptors observed after agonist activation are considered two important regulatory processes of receptor transduction. Endogenous human delta-opioid receptors (hDOR) are differentially regulated in terms of desensitization by peptide ([d-Pen2,5]enkephalin (DPDPE) and Deltorphin I) and alkaloid (etorphine) agonists in the neuroblastoma cell line SK-N-BE (Allouche, S., Roussel, M., Marie, N., and Jauzac, P. (1999) Eur. J. Pharmacol. 371, 235-240). In the present study, we examined the role of hDOR internalization and down-regulation in this differential desensitization. Sustained activation by peptides for 30 min caused a marked decrease of both [3H]diprenorphine binding sites and hDOR immunoreactivity, observed in a Western blot, whereas a moderate reduction by 30% was observed after a 30- and 60-min etorphine exposure in binding experiments without opioid receptor degradation. Using fluorescence microscopy, we visualized hDOR internalization promoted by different agonists in SK-N-BE cells expressing FLAG-tagged hDOR. Agonist withdrawal results in a greater recycling process correlated with a stronger hDOR resensitization after etorphine treatment compared with DPDPE or Deltorphin I, as shown in binding, immunocytochemical, and functional experiments. This suggests a distinct sorting of opioid receptors after their internalization. We demonstrated a lysosomal hDOR targeting upon peptides by using chloroquine in binding, Western blot, and immunocytochemical experiments and by colocalization of this receptor with a late endosome marker. In contrast, when the recycling endosome blocker monensin was used, acceleration of desensitization associated with a strong intracellular immunostaining was observed upon etorphine treatment. The possibility of separate endocytic pathways responsible for the differential sorting of hDOR upon peptide and alkaloid ligand exposure was ruled out by binding and immunocytochemical experiments using sucrose hypertonic solution. First, these results showed complex relationships between hDOR internalization/down-regulation and desensitization. Second, we demonstrated for the first time that the same receptor could undergo a distinct sorting after internalization by peptide and alkaloid agonists.  相似文献   

14.
We have utilized limited in situ trypsinization of the adenylate cyclase-coupled beta-adrenergic receptor of frog erythrocytes to probe the processes of receptor activation, desensitization, and recycling. Treatment of intact erythrocytes with trypsin (1 mg/ml) for 1 h at 20 degrees C converts all the receptor peptides (identified by photoaffinity labeling with p-azido-125I-benzylcarazolol) from a Mr approximately 58,000 to a Mr approximately 40,000 species. Nonetheless, the trypsinized beta-adrenergic receptors bind agonists and antagonists with unaltered affinity and with no change in the number of binding sites. Moreover, the ability of the proteolyzed receptors to interact with the nucleotide regulatory protein to form a high affinity guanine nucleotide-sensitive state and to activate adenylate cyclase were also unaltered. However, upon exposure of intact cells to the agonist isoproterenol, trypsinized beta-adrenergic receptors were more rapidly and more completely cleared from the plasma membranes ("down-regulated") than untrypsinized receptors. Whereas down-regulated receptors from nontrypsinized cells appear to recycle to the cell surface after removal of the agonist, internalized trypsinized beta-adrenergic receptors do not recycle to the plasma membrane and appear to be degraded within the cell. Moreover, when internalized receptors, recovered in a light vesicle fraction, were fused with a heterologous adenylate cyclase system, untreated but not trypsinized receptors reconstituted catecholamine stimulation of the enzyme. These data suggest that the beta-adrenergic receptor contains a trypsin-sensitive site which is exposed on the outer surface of the plasma membrane. Proteolysis at this site releases a fragment which though not critically involved in either ligand binding or "effector coupling" might be important for anchoring the receptors in the plasma membrane. These data also suggest that in situ proteolysis of the receptors might serve as a physiological trigger for their internalization and degradation.  相似文献   

15.
Incubation of 1321N1 human astrocytoma cells with 1 microM isoproterenol rapidly results in the conversion of a portion of the beta-adrenergic receptors to a membrane form that can be separated from markers for the plasma membrane by sucrose density gradient or differential centrifugation. This "light peak" form of the receptor reaches a maximal level within 10 min of incubation of cells with catecholamine. Two types of experiments suggest that the early phase of catecholamine-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase can be separated into at least two reactions. First, the agonist-induced loss of catecholamine-stimulated adenylate cyclase activity precedes the appearance of beta-adrenergic receptors in the light peak fraction by 1-2 min. Second, pretreatment of cells with concanavalin A prior to induction of desensitization blocks the formation of the light peak form of beta-adrenergic receptors without blocking the "uncoupling" reaction as measured by catecholamine-stimulated adenylate cyclase activity. Specificity for the reaction that converts beta-adrenergic receptors to the light peak form is indicated by the lack of a catecholamine-induced alteration in the sucrose density gradient distribution of muscarinic cholinergic receptors, adenylate cyclase or the guanine nucleotide-binding proteins, Ns and Ni. The light peak of beta-adrenergic receptors migrates at a density similar to that of at least a portion of the activity of galactosyltransferase, a marker for Golgi. Enzyme marker activities for lysosomes and endoplasmic reticulum are not associated with this population of beta-adrenergic receptors. Taken together, these and other data suggest that incubation of 1321N1 cells with isoproterenol results in a rapid uncoupling of beta-adrenergic receptors from adenylate cyclase which is followed by a change in the membrane form of the receptor. This latter step most likely represents internalization of receptors into a vesicular form which may then serve as the precursor state from which receptors are eventually lost from the cell.  相似文献   

16.
beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.  相似文献   

17.
Specific beta-adrenergic receptors present in membrane preparations of frog erythrocytes were identified by binding of (-)-[3H]dihydroalprenolol, a potent competitive beta-adrenergic antagonist. The (-)-[3H]dihydroalprenolol binding sites could be solubilized by treatment of a purified erythrocyte membrane fraction with the plant glycoside digitonin but not by treatment with a wide variety of other detergents. The binding sites appeared to be soluble by several independent experimental criteria including (a) failure to sediment of 105,000 X g for 2 hours; (b) passage through 0.22-mu Millipore filters; (c) chromatography on Sepharose 6B gels; and (d) electron microscopy. The soluble receptor sites retained all of the essential characteristics of the membrane-bound sites, namely rapid and reversible binding of beta-adrenergic agonists and antagonists; strict stereospecificity toward both beta-adrenergic agonists and antagonists; appropriate structure-activity relationships; saturability of the sites at low concentrations of ligand; no affinity for alpha-adrenergic drugs, nonphysiologically active catechol compounds, and catecholamine metabolites. Based on gel chromatography in the presence of detergent, the molecular weight of the soluble receptor is estimated to be no greater than 130,000 to 150,000. Equilibrium binding studies indicated a KD for the soluble receptor of 2 nM. Hill coefficients (nH) of 0.77 and curved Scatchard plots suggested the presence of negatively cooperative interactions among the solubilized receptors in agreement with previous findings with the membrane-bound sites. Kinetic studies indicated an association rate constant K1 = 3.8 X 10(6) M-1 min-1 and a reverse rate constant k2 = 2.3 X 10(-3) min-1 at 4 degrees. The kinetically derived KD (k2/k1) of 0.6 nM is in reasonable agreement with that determined by equilibrium studies. The soluble receptors were labile at temperature greater than 4 degrees but could be stabilized with high concentrations of EDTA. Guanidine hydrochloride and urea produced concentration-dependent losses of binding activity which were partially reversible upon dialysis. Trypsin and phospholipase A both degraded the soluble receptors but a variety of other proteases and phospholipases as well as DNase and RNase were without effect. Experiments with group-specific reagents indicated that free lysine, tryptophan, serine, and sulfhydryl groups may be important for receptor binding. These studies suggest that the receptor is probably a protein which requires lipids for functional integrity. Data obtained with the solubilized binding sites are consistent with the contention that these sites represent the physiologically relevant beta-adrenergic receptors which have been extracted from the membranes with full retention of their properties.  相似文献   

18.
Desensitization of turkey erythrocyte adenylate cyclase by exposure of these cells to the beta-adrenergic agonist isoproterenol leads to a decrease in subsequent adenylate cyclase stimulation by isoproterenol, F-, or Gpp(NH)p without any apparent loss or down regulation of receptors (B.B. Hoffman et al. J. Cyclic Nucl. Res. 5: 363-366, 1979). We now report that the desensitization is associated with a functional "uncoupling" of the beta-adrenergic receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide sensitive complex with agonist as assessed by computer analysis of radioligand binding data. The changes in adenylate cyclase responsiveness as well as the alterations in receptor affinity for agonists are reproduced by incubation of turkey erythrocytes with the cAMP analog 8-Bromo-adenosine 3':5'- cyclic monophosphate. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be a cAMP mediated alteration of a component(s) of the beta-adrenergic receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

19.
The adenylate cyclase of cultured differentiated RL-PR-C hepatocytes is desensitized to 1-isoproterenol by exposure to this beta-agonist. Virtually complete desensitization occurred by 60 min (intact cells) or 30 min (isolated plasma membranes). Isoproterenol was maximally effective at 10 micrometers, although substantial desensitization occurred at isoproterenol concentrations as low as 10 nM. Protein synthesis was not required for desensitization. Recovery from desensitization under tissue culture conditions was only 25% complete by 24 h. Maximum desensitization was accompanied by only a modest 35% decrease in binding sites (as determined by binding assays with [3H]dihydroalprenolol), with no change in binding affinity. Adenylate cyclase desensitized to 1-isoproterenol responded normally to guanine nucleotides and to fluoride, suggesting that the regulatory and catalytic proteins were not the sites of the desensitization "defect'. Using N-ethylmaleiimide to inactive the regulatory and catalytic proteins, and dicyclohexylcarbodiimide to inactivate the beta-adrenergic receptor, of intact hepatocytes, various heterologous cell fusion hybrids were produced, and their adenylate cyclases tested for responsiveness to 1-isoproterenol; only hybrids containing "desensitized' receptor failed to respond to isoproterenol. These results suggest that the mechanism of desensitization to isoproterenol involves only the receptor component of the receptor-regulatory protein(s)-adenylate cyclase complex, and that the receptors are reduced in number and/or ability to interact with the regulatory protein as a result of the desensitization process.  相似文献   

20.
Recombinant turkey erythrocyte beta-adrenergic receptors expressed in murine L cells exhibited characteristic avian subtype selectivity for agonists and antagonists. In 10 of the 11 clones studied, no agonist-induced internalization of receptor was observed, although agonist-induced uncoupling of receptor and adenylyl cyclase occurred rapidly. GTP caused little or no decrease in affinity for beta-adrenergic agonists. Such behavior is commonly observed in avian erythrocytes. In contrast, one clone was susceptible to agonist-induced receptor internalization and down-regulation even though it exhibited characteristic avian beta-adrenergic ligand-binding properties. The affinity of this variant receptor for agonists was also notably reduced by GTP. Electrophoresis of affinity-labeled receptor from this clone indicated an apparent size of about 33 kDa, about 12 kDa less than that of the native or recombinant turkey beta-adrenergic receptor. Genomic DNA from this cell line that encodes the receptor was cloned and partially sequenced. The coding region of the original receptor cDNA was interrupted after codon 412 (out of 483) and was followed by 36 base pairs of novel sequence prior to the first in-frame stop codon. These results suggest that the lack of both hormone-induced internalization and GTP-sensitive, high affinity binding of agonists that is characteristic of the beta-adrenergic receptor in avian erythrocytes is due to intrinsic properties of the receptor. The restoration of these phenomena in a C-terminally truncated mutant receptor suggests the importance of the C-terminal domain in determining these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号