首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A partially purified algal protein mixture which supports in vitro DNA replication consists of soluble proteins and proteins extracted from thylakoid membrane. The membrane extract is essential for the specific initiation of replication at a displacement loop (D-loop) site previously mapped by electron microscopy. D-loop site and its flanking sequences have been cloned and sequenced. In this study, fragment-retention assays using various subclones of the sequenced region indicate that some proteins in the membrane extract bind strongly and specifically with a 494 bp restriction fragment which partially overlaps the D-loop site. Protein gel analyses of the protein-DNA complex identify three DNA-binding polypeptides with apparent molecular weights of 18, 24 and 26 kDa, respectively. Treatment with chloramphenicol, an inhibitor of chloroplast protein synthesis, for 1 h has no obvious effect on the contents of the 24 or 26 kDa polypeptides but significantly reduces the content of the 18 kDa polypeptide in the membrane extract.  相似文献   

2.
J Waddell  X M Wang    M Wu 《Nucleic acids research》1984,12(9):3843-3856
Chloroplast DNA, isolated from a synchronized culture of Chlamydomonas reinhardii, was digested with restriction endonucleases and examined in the electron microscope. Restriction fragments containing displacement loops (D-loop) were photographed and measured to determine the position of replicated sequences in relation to the restriction enzyme sites. D-loops were located at two positions on the physical map of chloroplast DNA. One replication origin was mapped at about 10 kb upstream of the 5' end of a 16s rRNA gene. The second origin was spaced 6. 5kb apart from the first origin and was about 16.5 kb upstream of the same 16s rRNA. Initiations at those two sites were not always synchronized. Replication initiated with the formation of a D-loop resulting from the synthesis of one daughter strand. After a short initial lag phase, corresponding to the synthesis of 350 +/- 130 bp of one daughter strand, DNA synthesis then proceeded in both directions. Both D-loop regions were preferred binding sites of undetermined protein complexes.  相似文献   

3.
In Chlamydomonas reinhardi the chloroplast DNA (ch;DNA) of mating type plus cells undergoes cyclical methylation and demethylation during the life cycle. Methylation occurs during gametogenesis, and fully differentiated gametes can be dedifferentiated back to vegetative cells which contain nonmethylated chlDNA by the addition of a nitrogen source for growth. We examined the dedifferentiation process and found that the mating ability of gametes was lost rapidly after the start of dedifferentiation at a time when the chlDNA was still methylated. The enzymatic activity of the 200-kilodalton DNA methyltransferase was lost at a rate consistent with the rate of dilution during cell division. Methylation of chlDNA decreased at a slower rate than was expected from cell division alone but was consistent with the continuing activity of the preexisting methyltransferase so long as it was present. These results support the hypothesis that demethylation of chlDNA occurs by dilution out of enzymatic methylating activity rather than by enzymatic demethylation.  相似文献   

4.
We have examined DNA replication in Chlamydomonas reinhardtii chloroplasts in vivo when chloroplast type II topoisomerases are inactivated with sublethal doses of novobiocin. DNA replication is at first inhibited under these conditions. However, after a delay of several hours, chloroplast chromosomes initiate a novobiocin-insensitive mode of DNA replication. This replication starts preferentially near a hotspot of recombination in the large inverted repeats, instead of from the normal chloroplast origins, oriA and oriB. It replicates one, but not the other single-copy region of the chloroplast chromosome. We speculate that novobiocin-insensitive DNA replication in chloroplasts requires recombination in this preferred initiation region.  相似文献   

5.
Summary We demonstrated that the 1055 by restriction fragment containing OriA, a chloroplast DNA replication origin of Chlamydomonas reinhardtii, has electrophoretic anomalies characteristic of bent DNA. A tandem dimer of the region was constructed. Quantitative measurement of the relative gel mobility of a set of permuted fragments was used to extrapolate the approximate position of the bent DNA segment. By analyzing the gel mobility of short, sequenced fragments of the bent DNA region, the putative bending locus was identified. Two A4 tracts and two A5 tracts were located in the bending locus. Oligonucleotide-directed mutagenesis was then used to disrupt the A tract or the spacing between A tracts and the effect of site-specific mutation on electrophoretic mobility was analyzed. To assess the functional role of the bent DNA region, subclones containing the bending locus, mutated bending locus, and regions flanking the bending locus were constructed. Each subclone was used as template in an in vitro DNA replication system which preferentially initiated DNA replication at OriA. A 224 by subclone with the bending locus positioned in the middle displayed the highest replication function and was sufficient to initiate DNA replication in vitro. Site-specific mutations or alterations of the A tracts resulted in decreased DNA bending and decreased DNA replication activity.  相似文献   

6.
A complementation experiment was developed to identify the protein component that is essential for the in vitro replication of a cloned template containing a chloroplast DNA replication origin of Chlamydomonas reinhardtii. Using this method, we have identified a DNA primase activity that copurified with DNA polymerase from the crude protein mixture. The primase catalyzed the synthesis of short RNA primers on single-stranded DNA templates. Among the synthetic templates, the order of preference was poly(dA), poly(dT), and poly(dC). The primer size range for these templates was 11-18, 5-12, and 3-11 nucleotides, respectively. On a single-stranded template containing the chloroplast DNA replication origin, the primer length range reached 19 to 27 nucleotides, indicating a better processtivity. Several initiation sites were mapped on both strands of the cloned replication origin. Some preferential initiation sites were located on A tracks spaced at one helical turn apart within the bending locus. Primase improved the template specificity of the in vitro DNA replication system and enhanced the incorporation of radioactive dATP into the supercoiled template containing the core sequences of the chloroplast DNA replication origin.  相似文献   

7.
8.
The chloroplast DNA of Chlamydomonas reinhardii has been examined by restriction endonuclease analysis. EcoRI, BamHI and BglII produce 30, 17 and 12 fragments, respectively, whose sites have been determined by electron microscopy and by comparative gel electrophoresis. These fragments have been ordered into a circular map which corresponds to a genome size of Mr = 126 × 106. The map was established by comparing the double digests of individual restriction fragments and by hybridizing purified labelled fragments to restriction enzyme digests of chloroplast DNA. The restriction fragments were isolated by molecular cloning or by preparative agarose gel electrophoresis.The two sets of chloroplast ribosomal RNA genes are contained within two inverted repeats of 13 × 106 molecular weight, which are located nearly at opposite sides of the map. In addition, the mapping studies have revealed the presence of short repeated base sequences which are interspersed throughout the chloroplast genome.  相似文献   

9.
10.
PhiX174 replicative form DNA replication, origin and direction   总被引:15,自引:0,他引:15  
  相似文献   

11.
Over half of the chloroplast ribosomes isolated from growing cultures of Chlamydomonas reinhardtii are bound to chloroplast thylakoid membranes if completion of nascent polypeptide chains is prevented by chloramphenicol. The free chloroplast ribosomes are recovered in homogenate supernatants, and presumably originate from the chloroplast stroma. Only about 10% of these free chloroplast ribosomes are polyribosomes, even under conditions when 70% of free cytoplasm ribosomes are recovered as polyribosomes. The nonionic detergent Nonidet P-40 liberates atypical polyribosomes (Type I), from membranes, which require both ribonuclease and proteases for complete conversion to monomeric ribosomes. Thus Type I particles are held together by mRNA but are also held together by peptide bonds. These Type I polyribosomes probably are not bound to intact membrane, but might be bound to some protein-containing sub-membrane particle. The Type I polyribosomes are dissociated to ribosomal subunits by puromycin and high salt, and contained 0.2 to 1 nascent chain per ribosome. If membranes are treated with Nonidet and proteases at the same time, polyribosomes which are digested to monomeric ribosomes by ribonuclease alone (Type II) are obtained. Type II polyribosomes are smaller than Type I, and probably represent the true size distribution of polyribosomes on the membranes. At least 50% of the membrane-bound ribosomes are polyribosomes, since that much membrane bound chloroplast RNA is recovered as Type I or Type II polyribosomes.  相似文献   

12.
Fragments produced by digestion of Pisum sativum chloroplast DNA with EcoRI were examined by agarose gel electrophoresis. These EcoRI-fragments were joined in vitro to Apr-ColE1 RSF2124 plasmid and cloned in Escherichia coli. Methods of molecular cloning of plasmid chimeras by success gradient centrifugation and repeated transformation and selection of recombinant plasmids using mytomicin C were used for cloning hybrid plasmids with various EcoRI fragments of pea chloroplast DNA has been obtained.  相似文献   

13.
M Wu  Z Q Nie    J Yang 《The Plant cell》1989,1(5):551-557
From a high-salt extract of the purified thylakoid membrane, an 18-kD protein was detected. This protein was translated by the chloroplast ribosomes and could form a stable DNA-protein complex with a cloned chloroplast DNA replicative origin [Nie, Z.Q., Chang, D.Y., and Wu, M. (1987) Mol. Gen. Genet. 209, 265-269]. In this paper, the 18-kD protein is linked to frxB, a chloroplast-encoded, ferredoxin-type, iron-sulfur protein, by N-terminal microsequencing of the purified protein and computer analysis. The identification is further supported empirically by the fact that the electron paramagnetic resonance spectra of the protein indicate the presence of iron-sulfur clusters. A polyclonal antibody raised against a synthetic pentadecameric peptide with amino acid sequence corresponds to the highly conserved region of the frxB protein and reacts strongly and specifically with the 18-kD protein band in protein gel blot analyses. The 18-kD iron-sulfur protein is found to be related to a subunit of the respiratory chain NADH dehydrogenase by its cross-reaction with a polyclonal antibody raised against highly purified NADH-ubiquinone oxidoreductase, a key enzyme of the respiratory chain. These data are consistent with chlororespiration, and, thus, possible implication of chlororespiration in regulating the initiation of chloroplast DNA replication is discussed.  相似文献   

14.
We have isolated nonphotosynthetic (acetate-requiring) mutants with physical alterations in chloroplast DNA following growth of haploid cells in the chloroplast specific mutagen 5-fluorodeoxyuridine (FdUrd) or treatment of FdUrd-grown diploid cells with X rays. About one-third of the nonphotosynthetic mutations resulting from FdUrd treatment alone show simple deletions. All eight of the mutants examined so far which were obtained with FdUrd plus X rays have deletions that are accompanied by rearrangements, including inversions or duplications. All the alterations extend into one of the two inverted repeat regions of the chloroplast genome which contain the ribosomal RNA cistrons. However, Southern hybridization experiments reveal that the rRNA cistrons are not deleted but instead are contained in new fragments. The relocated rRNA cistrons appear to be functional, since the mutants have normal levels of chloroplast ribosomes. In most cases the deletions and rearrangements are symmetrical and affect both inverted repeats in a similar fashion. An exception is the mutant ac-u-c-2–43, which lacks one inverted repeat region almost completely, including an entire set of rRNA genes. Three additional mutants, which fail to recombine with ac-u-c-2–43 to give photosynthetically competent cells, have smaller deletions in the same region of the genome. These physical mapping studies have allowed us to place the ac-u-c locus itself in a region of unique sequence DNA in a fragment, Ba10, which also includes the right-hand end of one inverted repeat.  相似文献   

15.
Summary. We studied whether the monokaryotic chloroplast (moc) mutation affects the transmission of chloroplast and mitochondrial DNA in Chlamydomonas species. We used a previously isolated moc mutant from our cell line G33, which had only one large chloroplast nucleus. To obtain zygotes we crossed the mutant cells with wild-type cells, and mutant cells with receptive mates (females [mt+] with males [mt–]). In these zygotes, we recorded preferential dissolution of mt– parental chloroplast nuclei and fusion of the two cell nuclei. Antibiotic-resistance markers of chloroplast DNA were maternally transmitted in all crosses. PCR analysis of the cytochrome b (cob) gene sequence showed that the mitochondrial DNA was paternally transmitted to offspring. These results suggest that the moc mutation did not affect the organelle DNA transmission.Correspondence and reprints: Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.  相似文献   

16.
Self-splicing of the Chlamydomonas chloroplast psbA introns.   总被引:1,自引:0,他引:1       下载免费PDF全文
D L Herrin  Y Bao  A J Thompson    Y F Chen 《The Plant cell》1991,3(10):1095-1107
We used alpha-32P-GTP labeling of total RNA preparations to identify self-splicing group I introns in Chlamydomonas. Several RNAs become labeled with alpha-32P-GTP, a subset of which is not seen with RNA from a mutant that lacks both copies of the psbA gene. Hybridization of the GTP-labeled RNAs to chloroplast DNA indicates that they originate from the psbA and rrn 23S genes, respectively, the only genes known to contain group I introns in this organism. Introns 1, 2, and 3 of psbA (with flanking exon sequences) were subcloned and transcribed in vitro. The synthetic RNAs were found to self-splice; splicing required Mg2+, GTP, and elevated temperature. In addition, the accuracy of self-splicing was confirmed for introns 1 and 2, and intermediates in the splicing reactions were detected. These results, together with our recent data on the 23S intron, indicate that the ability to self-splice is a general feature of Chlamydomonas group I introns. These findings have significant implications for the mechanism of group I intron splicing and evolution in Chlamydomonas and other chloroplast genomes.  相似文献   

17.
The nucleotide sequence of the 5' terminus of the parvovirus H-1 was determined. There are two orientations of the 242-base-pair terminal palindrome in native replicative form DNA, one inverted with respect to the other. Adjacent to the terminal palindrome is an AT-rich region that is noncoding and contains a 55-base-pair tandem repeat. The addition mutant of H-1, DI-1, was also sequenced in this region and shown to have three copies of the tandem repeat sequence. Similarly, the related parvovirus H-3 contains only one copy of this repeat sequence. This region contains the replication origin for parvovirus replicative form DNA replication. Some of the implications of these results are discussed.  相似文献   

18.
Damage to DNA induced by ultraviolet light can be reversed by a blue light-dependent reaction catalyzed by enzymes called DNA photolyases. Chlamydomonas has been shown to have DNA photolyase activity in both the nucleus and the chloroplast. Here we report the cloning and sequencing of a gene, PHR2, from Chlamydomonas encoding a class II DNA photolyase. The PHR2 protein, when expressed in Escherichia coli, is able to complement a DNA photolyase deficiency. The previously described Chlamydomonas mutant, phr1, which is deficient in nuclear but not chloroplast photolyase activity was shown by RFLP analysis not to be linked to the PHR2 gene. Unlike the recently reported class II DNA photolyase from Arabidopsis, the protein encoded by PHR2 is predicted to contain a chloroplast targeting sequence. This result, together with the RFLP data, suggests that PHR2 encodes the chloroplast targeted DNA photolyase.  相似文献   

19.
The identity of peaks generated by chloroplast ribosomes of Chlamydomonas reinhardtii were determined by zone velocity sedimentation on sucrose density gradients, and analysis of distribution of ribosomal RNAs in the gradients. The sedimentagion coefficient of the principal peak was 66-70 S (usually 69 S), in good agreement with previously reported values for chloroplast ribosomes of C. reinhardtii, and other organisms. The fast sedimenting side of the 69 S peak contained an excess of chloroplast large subunit. When ribosome dissociation was prevented by sedimentation at low velocity, by aldehyde fixation, or by the presence of nascent polypeptide chains, the principal peak had a sedimentation coefficient of about 75 S. Thus the 69 S peak was an artifact caused by dissociation during centrifugation. Peaks that contained chloroplast ribosomal RNAs were also observed at '60 S' and '45 S' when chloroplast ribosomes were centrifuged unfixed at high velocity. The amounts of '60 S' and '45 S' components were decreased by centrifugation at low speed, or fixation, but sedimentation coefficients remained unchanged. The '60 S', and '45 S' components were identified as large, and small subunits of chloroplast ribosomes, respectively. The artifacts produced by centrifugation of chloroplast ribosomes, are similar to the artifacts produced by centrifuging ribosomes of Escherichia coli. Similar explanations appear to apply to both. We concluded that the 69 S chloroplast ribosome peak occurs because of dissociation of 'tight' couples, and incomplete separation of subunits. Subunit peaks (60 S and 45 S) arise from free subunits, and/or from dissociation of 'loose' couples.  相似文献   

20.
We have analyzed changes in the structure of chloroplast chromosomes in response to light in growing Chlamydomonas cells using a crosslinking assay based on the intercalation of HMT (4'-hydroxymethyl-4,5',8-trimethylpsoralen) into DNA. Our results show that the structure of chloroplast chromosomes in at least three widely separated regions is different in light-grown vs. dark-grown cells. Structural changes in chloroplast chromosomes occur within 3 hrs after exposure to light or darkness, respectively. The response to light is not inhibited by atrazine and can be elicited by dim blue light incapable of evolving O2, indicating that it does not require photosynthesis. Inhibition of cytoplasmic protein synthesis with cycloheximide prevents this response to light, indicating that it depends, at least in part, on proteins imported from the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号