首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ceruloplasmin (CP), the blue oxidase present in all vertebrates, is the major copper-containing protein of plasma. We investigated oxidative modification of human CP by peroxyl radicals generated in a solution containing 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). When CP was incubated with AAPH, the aggregation of proteins was increased in a time- and dose-dependent manner. Incubation of CP with AAPH resulted in a loss of ferroxidase activity. Superoxide dismutase and catalase did not protect the aggregation of CP, whereas hydroxyl radical scavengers such as ethanol and mannitol protected the protein aggregation. The aggregation of proteins was significantly inhibited by the copper chelators, diethyldithiocarbamate and penicillamine. Exposure of CP to AAPH led to the release of copper ions from the enzyme and the generation of protein carbonyl derivatives. Subsequently, when the amino acid composition of CP reacted with AAPH was analyzed, cysteine, tryptophan, methionine, histidine, tyrosine, and lysine residues were particularly sensitive.  相似文献   

2.
A method has been used to quantitate the reaction between eukaryotic type I DNA topoisomerase and topological forms of DNA. This procedure (Trask, D.K., DiDonato, J.D. and Muller, M.T. (1984) Eur. Mol. Biol. Organ. J. 3, 671-676) measures the efficiency of DNA cleavage and concurrent formation of a covalent enzyme/DNA complex. Eukaryotic type I topoisomerases react preferentially by 5-10-fold with supercoiled DNA. The effect of supercoiling is clearly evident in that both the initial rate and final extent of the reaction is elevated. Because the dissociation rate is much lower than the association rate, it is possible to isolate native topoisomerase/DNA complexes. These complexes are comprised of enzyme molecules which are catalytically active when challenged with a second supercoiled DNA substrate. Collectively, the data support the conclusion that a functional intermediate in the reaction sequence is being detected and that the avian topoisomerase I preferentially cleaves supercoiled DNA.  相似文献   

3.
Quantitation of the conversion of nonradioactive supercoiled DNA to its open circular or linear forms on ethidium-stained electrophoretic gels has been difficult because of differential binding of ethidium to supercoiled DNA vs other forms under different conditions and the nonlinear response of photographic film. We have developed methods for adding a linear DNA as an internal fluorescence standard to "normalize" the quantity of DNA loaded into each lane of a gel. Inclusion of a linear normalizing DNA in samples before partitioning for individual supercoil cleavage reactions allows the quantitation of the resultant species, is technically easy, and does not require quantitative application of the sample to the gel. If the presence of a normalizing DNA during supercoil cleavage is undesirable, the addition of a normalizing plasmid to each sample after supercoil cleavage (but before electrophoresis) or the quantitative application of samples containing test DNA alone to the gel gives similar data, but with increased variability. We use the normalizing DNA method in cleavage by a physical agent (ionizing radiation) and in a more complex situation, by a protein-based, light-dependent synthetic endonuclease. We show how the fraction of intact supercoiled DNA can be calculated from measurement of the cleaved and normalizing species only. The method also can be used in reactions involving the depletion of one DNA species, whether supercoiled or not, such as protein-DNA interactions as detected by gel retardation assays.  相似文献   

4.
Site-specific cleavage of supercoiled DNA by ascorbate/Cu(II).   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated ascorbate/Cu(II) cleavage of double-stranded DNA in the presence and absence of DNA negative torsion. We found that ascorbate/Cu(II) cleavage shows a site-specificity that is dependent on negative torsion and is influenced by the nature of the salt, ionic strength, and pH. This provides strong evidence for involvement of local DNA conformation in ascorbate/Cu(II) specific cleavage sites, that differs from the previous reports on cleavage of linear double-stranded DNA and secondary structures assumed by single-stranded DNA. The data indicate specific binding of Cu(II) ions to sites in the negatively supercoiled DNA. Fining mapping of the cleavage sites does not reveal any known DNA conformation, nor does it indicate any sequence identity among the sites cleaved. However, identification of a major site of cleavage of supercoiled DNA at physiological ionic strength, pH and temperature, along with fact that ascorbate and Cu(II) are normal cell constituents, suggests the torsion-dependent, site-specific interactions could have biological significance.  相似文献   

5.
We have examined the DNA damage produced by reaction of peroxyl radicals with human fibroblast DNA. DNA damage consisted of both strand breaks and base modifications. The extent of strand breaks and base modifications induced as a function of peroxyl radical concentration was determined by quantitation of fragment size distributions using denaturing glyoxal-agarose gel electrophoresis. Both strand breaks and base modifications increased in a log linear fashion with respect to peroxyl radical concentration. Oxidative base modifications were observed to occur to a greater extent than strand breaks at every concentration measured. The sequence-specific distribution of peroxyl radical induced base damage was mapped for 803 nucleotide positions using the method of ligation mediated PCR. A total of 87% of all guanine positions in the examined sequences was found to be significantly oxidized. The order of reactivity of DNA bases toward oxidation by peroxyl radicals was found to be G > C > T. Adenine is essentially unreactive. The yield of oxidative base modifications at guanines and cytosines by peroxyl radicals depends on the exact specification of 5' and 3' flanking bases in a polarity dependent manner. Every guanine in the 5'XGC3' motif was found to be oxidized, where X is any 5' neighbor. In contrast, 5' and 3' purine flanks drastically reduced the extent of peroxyl radical G oxidation. The pattern of base modification and the influence of nearest neighbors differs substantially from that previously reported for hydrogen peroxide damage mediated by low valent transition metal ions for the identical DNA sequences.  相似文献   

6.
Ceruloplasmin (CP), the blue oxidase present in all vertebrates, is the major copper-containing protein of plasma. We investigated oxidative modification of human CP by peroxyl radicals generated in a solution containing 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH). When CP was incubated with AAPH, the aggregation of proteins was increased in a time- and dose-dependent manner. Incubation of CP with AAPH resulted in a loss of ferroxidase activity. Superoxide dismutase and catalase did not protect the aggregation of CP, whereas hydroxyl radical scavengers such as ethanol and mannitol protected the protein aggregation. The aggregation of proteins was significantly inhibited by the copper chelators, diethyldithiocarbamate and penicillamine. Exposure of CP to AAPH led to the release of copper ions from the enzyme and the generation of protein carbonyl derivatives. Subsequently, when the amino acid composition of CP reacted with AAPH was analyzed, cysteine, tryptophan, methionine, histidine, tyrosine, and lysine residues were particularly sensitive.  相似文献   

7.
Chemical and enzymatic probing methods are powerful techniques for examining details of sequence-dependent structure in DNA and RNA. Reagents that cleave nucleic acid molecules in a structure-specific, but relatively sequence-non-specific manner, such as hydroxyl radical or DNase I, have been used widely to probe helical geometry in nucleic acid structures, nucleic acid-drug complexes, and in nucleoprotein assemblies. Application of cleavage-based techniques to structures present in superhelical DNA has been hindered by the fact that the cleavage pattern attributable to supercoiling-dependent structures is heavily mixed with non-specific cleavage signals that are inevitable products of multiple cleavage events. We present a rigorous mathematical procedure for extracting the cleavage pattern specific to supercoiled DNA and use this method to investigate the hydroxyl radical cleavage pattern in a cruciform DNA structure formed by a 60 bp inverted repeat sequence embedded in a negatively supercoiled plasmid. Our results support the presence of a stem-loop structure in the expected location and suggest that the helical geometry of the cruciform stem differs from that of the normal duplex form.  相似文献   

8.
9.
10.
The study of the important role of peroxyl radicals in biological systems is limited by their difficult detection with direct electron spin resonance (ESR). Many ESR spectra were assigned to 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/peroxyl radical adducts based only on the close similarity of their ESR spectra to that of DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the radical adduct from DMPO/superoxide radical adduct. Later, the spin-trapping literature reported that DMPO/peroxyl radical adducts have virtually the same hyperfine coupling constants as synthesized alkoxyl radical adducts, raising the issue of the correct assignment of peroxyl radical adducts. However, using 17O-isotope labelling, the methylperoxyl and methoxyl radical adducts should be distinguishable. We have reinvestigated the spin trapping of the methylperoxyl radical. The methylperoxyl radical was generated in aerobic solution with 17O-molecular oxygen either in a Fenton system with dimethylsulfoxide or in a chloroperoxidase system with tert-butyl hydroperoxide. Two different spin traps, DMPO and 2,2,4-trimethyl-2H-imidazole-1-oxide (TMIO), were used to trap methylperoxyl radical. 17O-labelled methanol was used to synthesize methoxyl radical adducts by nucleophylic addition. It was shown that the 17O hyperfine coupling constants of radical adducts formed in methylperoxyl radical-generating systems are identical to that of the methoxyl radical adduct. Therefore, methylperoxyl radical-producing systems form detectable methoxyl radical adduct, but not detectable methylperoxyl radical adducts at room temperature. One of the possible mechanisms is the decomposition of peroxyl radical adduct with the formation of secondary alkoxyl radical adduct. These results allow us to reinterpret previously published data reporting detection of peroxyl radical adducts. We suggest that detection of 17O-alkoxyl radical adduct from 17O-labelled molecular oxygen can be used as indirect evidence for peroxyl radical generation.  相似文献   

11.
Kinetics of phycocyanine bilin groups destruction by peroxyl radicals   总被引:1,自引:0,他引:1  
Bilin groups in c-phycocyanine are readily bleached by peroxyl radicals produced in the thermolysis of 2, 2'-azobis(2-amidinopropane). From an evaluation of the bilin groups destroyed per radical that interacts with the protein, it is concluded that the bilin moiety is the main target of the radicals. Kinetic expressions are derived that allows an estimation of the substrate reactivity from the analysis of the rate of bilin group modification as a function of the protein concentration. From this analysis it is concluded that micromolar concentrations of c-phycocyanine are able to reduce the steady state concentration of the peroxyl radicals by one half, indicating a high antioxidant activity for this compound. This conclusion is confirmed by measuring the capacity of the protein to protect 1-naphthol from modification by peroxyl radicals. The results obtained show that the bilin groups have, on a molar basis, an antioxidant activity similar to that of potent antioxidants such as catechin.  相似文献   

12.
Vanadyl ion (+4 oxidation state) has been shown to be an effective agent for chemoprotection of cancers in animals. For understanding the mechanism, distribution of vanadium was studied. More vanadium was found to accumulate in the nuclei of the liver of rats when it was given as vanadyl sulfate than when it was given as sodium vanadate (+5 oxidation state). The reactivity of vanadyl ion with DNA was investigated by the DNA cleavage technique and the reaction mechanism by ESR spectroscopy. Incubation of double-strand DNA with vanadyl ion and hydrogen peroxide resulted in marked concentration- and pH-dependent DNA cleavage. Studies by the ESR spin-trap method demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion with hydrogen peroxide. Thus the antineoplastic action of vanadyl ion is proposed to be due to DNA cleavage by hydroxyl radicals generated in the cells.  相似文献   

13.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

14.
Behavior of supercoiled DNA.   总被引:12,自引:1,他引:12       下载免费PDF全文
We study DNA supercoiling in a quantitative fashion by micromanipulating single linear DNA molecules with a magnetic field gradient. By anchoring one end of the DNA to multiple sites on a magnetic bead and the other end to multiple sites on a glass surface, we were able to exert torsional control on the DNA. A rotating magnetic field was used to induce rotation of the magnetic bead, and reversibly over- and underwind the molecule. The magnetic field was also used to increase or decrease the stretching force exerted by the magnetic bead on the DNA. The molecule's degree of supercoiling could therefore be quantitatively controlled and monitored, and tethered-particle motion analysis allowed us to measure the stretching force acting on the DNA. Experimental results indicate that this is a very powerful technique for measuring forces at the picoscale. We studied the effect of stretching forces ranging from 0.01 pN to 100 pN on supercoiled DNA (-0.1 < sigma < 0.2) in a variety of ionic conditions. Other effects, such as stretching-relaxing hysteresis and the braiding of two DNA molecules, are discussed.  相似文献   

15.
The enantiomers of the Sm (III), Eu (III) and Yb (III) complexes [LnL(NO3)2](NO3) of a chiral hexaazamacrocycle were tested as catalysts for the hydrolytic cleavage of supercoiled plasmid DNA. The catalytic activity was remarkably enantioselective; while the [LnLSSSS(NO3)2](NO3) enantiomers promoted the cleavage of plasmid pBR322 from the supercoiled form (SC) to the nicked form (NC), the [LnLRRRR(NO3)2](NO3) enantiomers were inactive. Kinetics of plasmid DNA hydrolysis was also investigated by agarose electrophoresis and it indicated typical single-exponential cleavage reaction. The hydrolytic mechanism of DNA cleavage was confirmed by the successful ligation of hydrolysis product by T4 ligase. The NMR study of the solutions of the complexes in various buffers indicated that the complexes exist as monomeric cationic complexes [LnL(H2O)3]3 + in slightly acidic solutions and as dimeric cationic complexes [Ln2L2(μ-OH)2(H2O)2]4 + in slightly basic 8 mM solutions, with the latter form being a possible catalyst for hydrolysis of phosphodiester bonds.  相似文献   

16.
Condensation of supercoiled DNA induced by MnCl2.   总被引:6,自引:0,他引:6       下载免费PDF全文
Multivalent cations condense DNA in vitro, but it had been thought that a valence of at least + 3 was required in aqueous solution. We have found that Mn2+ can produce toroidal condensates of supercoiled plasmid DNA, but not of linearized plasmid. Mg2+ does not cause condensation, and neither MgCl2 nor NaCl can negate the effect of MnCl2, indicating that the condensation mechanism with Mn is not primarily electrostatic. Supercoiled MnDNA is more extensively digested than the linear form by S1 nuclease. Supercoiling appears to cooperate with Mn2+ in stabilizing helix distortions and also provides a "pressure" that enhances lateral association.  相似文献   

17.
We have investigated the influence of the free radical initiator characteristics on red blood cell lipid peroxidation, membrane protein modification, and haemoglobin oxidation. 2,2′-Azobis(2-amidinopropane) (AAPH) and 4,4′-azobis(4-cyanovaleric acid) (ACV) were employed as free radical sources. Both azo-compounds are water-soluble, although ACV presents a lowed hydrophilicity, as evaluated from octanol/water partition constants. At physiological pH, they are a di-cation and a di-anion, respectively.

AAPH and ACV readily oxidise purified oxyhemoglobin in a very efficient free radical-mediated process, particularly for ACV-derived radicals, where nearly one heme moiety was modified per radical introduced into the system, suggesting that negatively charged radicals react preferentially at the heme group. The radicals derived from both azo-compounds lead to different oxidation products. Methemoglobin, hemichromes and choleglobin were produced in AAPH-promoted hemoglobin oxidation, while ACV-derived radicals predominantly form hemichromes, with very low production of choleglobin.

Red cell damage was evaluated at the level of hemoglobin and membrane constituents modification, and was expressed in terms of free radical doses. Before the onset of the lytic process, ACV leads to more lipid peroxidation than AAPH, and induces a moderate oxidation of intracellular Hb. This intracellular oxidation is markedly increased if ACV hydrophilicity is decreased by lowering the pH. On the other hand, AAPH-derived radicals are considerable more efficient in promoting protein band 3 modification and cell lysis, without significant intracellular hemoglobin oxidation. These results show that the lytic process is not triggered by lipid peroxidation or hemichrome formation, and suggest that membrane protein modification is the relevant factor leading to red blood cell lysis.  相似文献   

18.
We have investigated the influence of the free radical initiator characteristics on red blood cell lipid peroxidation, membrane protein modification, and haemoglobin oxidation. 2,2'-Azobis(2-amidinopropane) (AAPH) and 4,4'-azobis(4-cyanovaleric acid) (ACV) were employed as free radical sources. Both azo-compounds are water-soluble, although ACV presents a lowed hydrophilicity, as evaluated from octanol/water partition constants. At physiological pH, they are a di-cation and a di-anion, respectively.

AAPH and ACV readily oxidise purified oxyhemoglobin in a very efficient free radical-mediated process, particularly for ACV-derived radicals, where nearly one heme moiety was modified per radical introduced into the system, suggesting that negatively charged radicals react preferentially at the heme group. The radicals derived from both azo-compounds lead to different oxidation products. Methemoglobin, hemichromes and choleglobin were produced in AAPH-promoted hemoglobin oxidation, while ACV-derived radicals predominantly form hemichromes, with very low production of choleglobin.

Red cell damage was evaluated at the level of hemoglobin and membrane constituents modification, and was expressed in terms of free radical doses. Before the onset of the lytic process, ACV leads to more lipid peroxidation than AAPH, and induces a moderate oxidation of intracellular Hb. This intracellular oxidation is markedly increased if ACV hydrophilicity is decreased by lowering the pH. On the other hand, AAPH-derived radicals are considerable more efficient in promoting protein band 3 modification and cell lysis, without significant intracellular hemoglobin oxidation. These results show that the lytic process is not triggered by lipid peroxidation or hemichrome formation, and suggest that membrane protein modification is the relevant factor leading to red blood cell lysis.  相似文献   

19.
The strand specificity of topoisomerase II mediated DNA cleavage was analyzed at the nucleotide level by characterizing the enzyme's interaction with a strong DNA recognition site. This site was isolated from the promoter region of the extrachromosomal rRNA genes of Tetrahymena thermophila and was recognized by type II topoisomerases from a variety of phylogenetically diverse eukaryotic organisms, including Drosophila, Tetrahymena, and calf thymus. When incubated with this site, topoisomerase II was found to introduce single-stranded breaks (i.e., nicks) in addition to double-stranded breaks in the nucleic acid backbone. Although the nucleotide position of cleavage on both the noncoding and coding strands of the rDNA remained unchanged, the relative ratios of single- and double-stranded DNA breaks could be varied by altering reaction conditions. Under all conditions which promoted topoisomerase II mediated DNA nicking, the enzyme displayed a 3-10-fold specificity for cleavage at the noncoding strand of its recognition site. To determine whether this specificity of topoisomerase II was due to a faster forward rate of cleavage of the noncoding strand or a slower rate of its religation, a DNA religation assay was performed. Results indicated that both the noncoding and coding strands were religated by the enzyme at approximately the same rate. Therefore, the DNA strand preference of topoisomerase II appears to be embodied in the enzyme's forward cleavage reaction.  相似文献   

20.
Early melting of supercoiled DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Denaturing gradient gel electrophoresis (formamide with urea) has been used to study the melting of supercoiled DNA. A linear gradient of denaturant concentration proportional to a 25 degrees C linear increase of temperature (Teff) from the left to the right edge of the gel was created perpendicular to DNA migration. The mobility of supercoiled DNA molecules was shown to drop to the level of relaxed molecules a long way (5-30 degrees C) before linear DNA began to melt. The further increase of Teff, including the melting range for linear molecules, caused no appreciable changes in the mobility of relaxed molecules. The transition curves are S-shaped for all the topoisomers, and an increase of superhelicity shifts the transition towards lower Teff values. The analysis of the results indicates that the observed relaxation of superhelical molecules is due to denatured region forming in them, their size increasing with the topoisomer number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号