首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL2, an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL2 on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL2 at low concentrations (40 μg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL2 at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL2 has two potential roles in reverse cholesterol transport. In one, HDL2 is an acceptor of macrophage FC. In the other, more novel role, HDL2 increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL2 inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

2.
Membranes prepared from cultured fibroblasts were assayed for acyl-coenzyme A: cholesterol acyltransferase (ACAT) by a method that relied exclusively on the cholesterol already present on the membranes as the sterol substrate. Changes in membrane ACAT activity during incubation of fibroblasts under a variety of conditions were similar to the changes in the rate of incorporation of oleic acid into cholesteryl esters by the intact cells. The addition of low-density lipoprotein (LDL) to fibroblasts pre-incubated with lipoprotein-deficient serum led to a transient increase in membrane ACAT activity, which reached its peak after 7h and was related to the receptor-mediated uptake and degradation of the lipoprotein by the cells. However, after incubation of the membranes with a cholesterol-rich donor lipoprotein, which resulted in an equilibration of cholesterol between membranes and donor, each preparation exhibited the same activity. In contrast with these effects of LDL, incubation of the cells with non-esterified cholesterol produced a prolonged increase in ACAT activity and an increase in the activity observed after equilibration. Furthermore, ACAT activity in cells grown with linoleic acid was higher, both before and after the addition of LDL, than that of cells grown in normal medium or with palmitate. The increase in activity produced by LDL was also greater, reflecting the greater rate of degradation of LDL by the cells, and was associated with an increase in the activity observed after equilibration with donor. The results suggest that although fibroblasts can increase the amount of active enzyme on their membranes to accommodate an exceptionally high or prolonged supply of cholesterol, under normal circumstances the increase in membrane ACAT activity produced by LDL can be explained entirely by an increase in the amount of cholesterol in the substrate pool.  相似文献   

3.
The aim of the present study was to characterize the acyl-coenzyme A: cholesterol acyltransferase (ACAT) activity in human liver microsomes. Liver biopsies were obtained from patients undergoing elective cholecystectomy under highly standardized conditions. In 34 patients the enzyme activity of the microsomal fraction averaged 6.6 +/- 0.7 (mean +/- SEM) pmol.min-1.mg protein-1 in the absence of exogenous cholesterol. Freezing of the liver biopsy in liquid nitrogen increased the enzyme activity five- to sixfold. Similarly, freezing of the microsomal fraction prepared from unfrozen liver tissue increased the enzyme activity about twofold. These results may help to explain previous disparate results reported in the literature. The enhanced ACAT activity obtained by freezing was at least partly explained by a transfer of unesterified cholesterol to the microsomal fraction and possibly also by making the substrate(s) more available to the enzyme. Preincubation of the microsomal fraction, prepared from unfrozen liver tissue, with unlabeled cholesterol increased the enzyme activity about fivefold. This finding indicates that hepatic ACAT in humans can also utilize exogenous cholesterol as substrate. Addition of cholesterol to frozen microsomes prepared from unfrozen liver tissue increased the ACAT activity two- to threefold, whereas addition of cholesterol to microsomes prepared from frozen liver tissue did not further increase the enzyme activity. No evidence supporting the concept that ACAT is activated-inactivated by phosphorylation-dephosphorylation could be obtained by assaying the enzyme under conditions similar to those during which the human HMG-CoA reductase is inactivated-activated.  相似文献   

4.
Altered hepatic cholesterol metabolism has been implicated in the etiology of cholesterol gallstones. This hypothesis has been examined by determining acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity in liver biopsies from 31 cholesterol gallstone patients and 12 control subjects. Hepatic ACAT activity in gallstone patients was decreased to one-third that in controls (P less than 0.001). No differences in hepatic homogenate or microsomal free and total cholesterol concentrations were observed between the two groups. However, marked increases in free (107%) and total (98%) cholesterol concentrations were found in the cytosolic fraction of liver biopsies from gallstone patients. The total phospholipid concentration of the liver homogenate fraction was unchanged in both groups; however, the microsomal total phospholipid concentration was reduced by 17% (P less than 0.01) in gallstone samples compared with controls. This difference did not result in a significantly increased microsomal cholesterol/phospholipid ratio for the gallstone group (0.180 +/- 0.030) compared with the control group (0.169 +/- 0.042). These results show that hepatic ACAT activity is significantly decreased in cholesterol gallstone patients. These changes in ACAT activity in livers of patients with cholesterol gallstones are consistent with the known increase in the amount of free cholesterol secreted in the bile of these patients. Thus, the changes in ACAT activity may contribute to the pathogenesis of cholesterol gallstones.  相似文献   

5.
Human HDL3 (d 1.125-1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products. (1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5-10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12-15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 microM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL. (2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21-1.25 g/ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15-30% lipolysis, the lecithin: cholesterol acyltransferase reactivity of HDL3 was reduced about 30-40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle. (3) The addition of the lecithin: cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin: cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin: cholesterol acyltransferase-induced removal of cellular cholesterol.  相似文献   

6.
A 70-75 kDa high-density lipoprotein (HDL) particle with pre-beta-electrophoretic migration (pre-beta(1)-HDL) has been identified in several studies as an early acceptor of cell-derived cholesterol. However, the further metabolism of this complex has not been determined. Here we sought to identify the mechanism by which cell-derived cholesterol was esterified and converted to mature HDL as part of reverse cholesterol transport (RCT). Human plasma selectively immunodepleted of pre-beta(1)-HDL was used to study factors regulating pre-beta(1)-HDL production. A major role for phospholipid transfer protein (PLTP) in the recycling of pre-beta(1)-HDL was identified. Cholesterol binding, esterification by lecithin/cholesterol acyltransferase (LCAT) and transfer by cholesteryl ester transfer protein (CETP) were measured using (3)H-cholesterol-labeled cell monolayers. LCAT bound to (3)H-free cholesterol (FC)-labeled pre-beta(1)-HDL generated cholesteryl esters at a rate much greater than the rest of HDL. The cholesteryl ester produced in pre-beta(1)-HDL in turn became the preferred substrate of CETP. Selective LCAT-mediated reactivity with pre-beta(1)-HDL represents a novel mechanism increasing the efficiency of RCT.  相似文献   

7.
P388D(1) macrophages prelabeled with [(3)H]arachidonic acid (AA) respond to bacterial lipopolysaccharide (LPS) by mobilizing AA in a process that takes several hours and is mediated by the concerted actions of the group IV cytosolic phospholipase A(2) and the group V secretory phospholipase A(2) (sPLA(2)). Here we show that when the LPS-activated cells are prelabeled with [(3)H]oleic acid (OA), they also mobilize and release OA to the extracellular medium. The time and concentration dependence of the LPS effect on OA release fully resemble those of the AA release. Experiments in which both AA and OA release are measured simultaneously indicate that AA is released 3 times more efficiently than OA. Importantly, LPS-stimulated OA release is strongly inhibited by the selective sPLA(2) inhibitors 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propane sulfonic acid and carboxymethylcellulose-linked phosphatidylethanolamine. The addition of exogenous recombinant sPLA(2) to the cells also triggers OA release. These data implicate a functionally active sPLA(2) as being essential for the cells to release OA upon stimulation with LPS. OA release is also inhibited by methyl arachidonyl fluorophosphonate but not by bromoenol lactone, indicating that the group IV cytosolic phospholipase A(2) is also involved in the process. Together, these data reveal that OA release occurs during stimulation of the P388D(1) macrophages by LPS and that the regulatory features of the OA release are strikingly similar to those previously found for the AA release.  相似文献   

8.
We have found that chitosan, a polysaccharide present in fungal cell walls, is able to activate macrophages for enhanced mobilization of arachidonic acid in a dose- and time-dependent manner. Studies aimed at identifying the intracellular effector(s) implicated in chitosan-induced arachidonate release revealed the involvement of the cytosolic Group IV phospholipase A2 (PLA2), as judged by the inhibitory effect of methyl arachidonoyl fluorophosphonate but not of bromoenol lactone. Interestingly, priming of the macrophages with lipopolysaccharide renders the cells more sensitive to a subsequent stimulation with chitosan, and this enhancement is totally blocked by the secretory PLA2 inhibitor 3-(3-acetamide)-1-benzyl-2-ethylindolyl-5-oxy-propanesulfonic acid (LY311727). Collectively, the results of this work establish chitosan as a novel macrophage-activating factor that elicits AA mobilization in P388D1 macrophages by a mechanism involving the participation of two distinct phospholipases A2.  相似文献   

9.
Cholesterol exists within the hepatocyte as free cholesterol and cholesteryl ester. The proportion of intrahepatic cholesterol in the free or ester forms is governed in part by the rate of cholesteryl ester formation by acyl-coenzyme A:cholesterol acyltransferase (ACAT) and cholesteryl ester hydrolysis by neutral cholesterol ester (CE) hydrolase. In other cell types both ACAT and CE hydrolase activities are regulated in response to changes in the need for cellular free cholesterol. In rats, we performed a variety of experimental manipulations in order to vary the need for hepatic free cholesterol and to examine what effect, if any, this had on the enzymes that govern cholesteryl ester metabolism. Administration of a 20-mg bolus of lipoprotein cholesterol or a diet supplemented with 2% cholesterol resulted in an increase in microsomal cholesteryl ester content with little change in microsomal free cholesterol. This was accomplished by an increase in cholesteryl esterification as measured by ACAT but no change in CE hydrolase activity. An increased need for hepatic free cholesterol was experimentally induced by intravenous bile salt infusion or cholestyramine (3%) added to the diet. ACAT activity was decreased with both experimental manipulations compared to controls, while CE hydrolase activity did not change. Microsomal cholesteryl ester content decreased significantly with little change in microsomal free cholesterol content. Addition of exogenous liposomal cholesterol to liver microsomes from cholestyramine-fed and control rats resulted in a 784 +/- 38% increase in ACAT activity. Nevertheless, the decrease in ACAT activity with cholestyramine feeding was maintained. These studies allowed us to conclude that changes in hepatic free cholesterol needs are met in part by regulation of the rate of cholesterol esterification by ACAT without a change in the rate of cholesteryl ester hydrolysis by CE hydrolase.  相似文献   

10.
Alpha-fetoprotein stimulates leukotriene synthesis in P388D1 macrophages   总被引:1,自引:0,他引:1  
Alpha-fetoprotein (AFP) is able to bind specifically polyunsaturated fatty acids, especially arachidonic acid, the major precursor for prostaglandin and leukotriene synthesis. In P388D1 macrophages, AFP was found to reduce prostaglandin synthesis. This reduced synthesis was counter-balanced by a higher release of unmetabolized arachidonic acid and an enhanced production of leukotrienes. The same results were obtained with unactivated and activated cells irrespective of the activator used: lipopolysaccharide, Ca2+ ionophore A23187, phorbol myristate acetate, interferon-gamma, silica, or zymozan particles. The stimulation of leukotriene synthesis by AFP in macrophages thus appears to be a possible mechanism for the in vitro immunosuppressive effects of this oncofetal protein.  相似文献   

11.
Guo ZY  Chang CC  Chang TY 《Biochemistry》2007,46(35):10063-10071
Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a resident enzyme in the endoplasmic reticulum. ACAT1 is a homotetrameric protein and contains nine transmembrane domains (TMDs). His460 is a key active residue and is located within TMD7. Human ACAT1 has seven free Cys, but the recombinant ACAT1 devoid of free Cys retains full enzyme activity. To further probe the functionality of TMD7 (amino acids 446-460) and TMD8 (amino acids 466-481), we used a parental ACAT1 devoid of free Cys as the template to perform Cys-scanning mutagenesis within these regions. Each of the single Cys mutants was expressed in Chinese hamster ovary (CHO) cell line AC29 lacking endogenous ACAT1. We measured the effect of single Cys substitution on enzyme activity and used the Cu(1,10-phenanthroline)2SO4-mediated disulfide cross-linking method to probe possible interactions of engineered Cys between the two identical subunits. The results show that several residues in one subunit closely interact with the same residues in the other subunit; mutating these residues to Cys does not lead to large loss in enzyme activity. Helical wheel analysis suggests that these residues are located at one side of the coil. In contrast, mutating residues F453, A457, or H460 to Cys causes large loss in enzyme activity; the latter residues are located at the opposite side of the coil. A similar arrangement is found for residues in TMD8. Thus, helical coils in TMD7 and TMD8 have two distinct functional sides: one side is involved in substrate-binding/catalysis, while the other side is involved in subunit interaction.  相似文献   

12.
Activation of acyl-CoA:cholesterol actyltransferase (ACAT) in macrophages by lipoproteins is a key event in atheroma foam cell formation. To help elucidate the mechanisms whereby lipoproteins stimulate ACAT, the early cellular events of lipoprotein-induced ACAT stimulation were studied in mouse peritoneal macrophages. As a function of increasing lipoprotein-cholesterol influx to the cell during the first few hours of incubation, ACAT activity was markedly stimulated by beta-very low density lipoprotein (beta-VLDL) and acetyl-low density lipoprotein (acetyl-LDL) only after lipoprotein-cholesterol influx reached a threshold level of approximately 25% above the basal cell cholesterol content. In contrast, LDL stimulated ACAT only minimally at this level of lipoprotein-cholesterol influx. In further experiments, the source of ACAT cholesterol substrate during the initial stimulation of ACAT was shown to be a mixture of cellular (approximately 75%) and lipoprotein-cholesterol (approximately 25%) in proportions that approximated the proportions of originally cellular and lipoprotein-cholesterol in the cell. Thus, lipoprotein-cholesterol rapidly mixed with most or all of cellular cholesterol before ACAT esterification. Additional studies showed that LDL caused significant efflux of cellular cholesterol, thus providing at least a partial explanation for the relatively weak ACAT stimulatory potential of LDL. To support this idea, LDL that was modified to decrease its ability to induce net cellular cholesterol efflux stimulated ACAT 2-fold greater than control LDL when matched for lysosomal LDL-cholesterol influx. Moreover, when the effective efflux potentials of beta-VLDL and acetyl-LDL were increased, ACAT stimulation was markedly decreased despite unchanged lipoprotein-cholesterol influx. Thus, macrophage ACAT is stimulated not directly by the influx of newly hydrolyzed lipoprotein-cholesterol but rather by net expansion of cellular cholesterol pools to a particular threshold level. This scheme has potentially important implications regarding the cellular and molecular mechanisms of foam cell formation.  相似文献   

13.
A protocol has been developed for isolating cholesterol ester-deficient cells from the Chinese hamster ovary cell clone 25-RA. This cell line previously was shown to be partially resistant to suppression of cholesterogenic enzyme activities by 25-hydroxycholesterol and to accumulate a large amount of intracellular cholesterol ester when grown in medium containing 10% fetal calf serum (Chang, T. Y., and Limanek, J. S. (1980) J. Biol. Chem. 255, 7787-7795). The higher cholesterol ester content of 25-RA is due to an increase in the rate of cholesterol biosynthesis and low density lipoprotein receptor activity compared to wild-type Chinese hamster ovary cells, and not due to an abnormal acyl-CoA:cholesterol acyltransferase enzyme. The procedure to isolate cholesterol ester-deficient mutants utilizes amphotericin B, a polyene antibiotic known to bind to cholesterol and to form pore complexes in membranes. After incubation in cholesterol-free medium plus an inhibitor of endogenous cholesterol biosynthesis, 25-RA cells were found to be 50-500 times more sensitive to amphotericin B killing than were mutant cells containing reduced amounts of cholesterol ester. Twelve amphotericin B-resistant mutants were isolated which retained the 25-hydroxycholesterol-resistant phenotype. These mutants did not exhibit the perinuclear lipid droplets characteristic of 25-RA cells, and lipid analysis revealed a large (up to 40-fold) reduction in cellular cholesterol ester. The acyl-CoA:cholesterol acyltransferase activities of these cholesterol ester-deficient mutants were markedly lower than 25-RA when assayed in intact cells or in an in vitro reconstitution assay. The tightest mutant characterized, AC29, was found to have less than 1% of the parental acyl-CoA:cholesterol acyltransferase activity. These mutants all have reduced rates of sterol synthesis and lower low density lipoprotein receptor activity compared to 25-RA, probably as a consequence of their reduced enzyme activities. Cell fusion experiments revealed that the phenotypes of all the mutants examined are not dominant and that the mutants all belong to the same complementation group. We conclude that these mutants contain a lesion in the gene encoding acyl-CoA:cholesterol acyltransferase or in a gene encoding a factor needed for enzyme production.  相似文献   

14.
A rapid assay of acyl-coenzyme A:lysolecithin acyltransferase activity   总被引:1,自引:0,他引:1  
A simple and rapid procedure for the assay of acyl-coenzyme A:1-acyl-sn-glycero-3-phosphocholine acyltransferase (lysolecithin acyltransferase, LLAT [EC 2.3.1.23]) activity in crude enzyme preparations is described. The incubation system utilizes lysolecithin and [1-14C]-oleoyl-coenzyme A as substrates. Labeled fatty acid released due to accompanying acyl-coenzyme A hydrolase [EC 3.1.2.2]activity is first removed by di-isopropyl ether extraction. The labeled lecithin produced due to LLAT action is then quantitatively recovered by partition of the incubation medium with di-isopropyl ether-n-butanol 60:40 (v/v). Selective extraction of the labeled lecithin formed and avoidance of customary thin-layer chromatographic isolation procedures permits assay of LLAT activity with excellent accuracy at a substantial saving of time. The entire assay can be completed in less than 30 min as compared to 2-3 hrs when following conventional procedures.  相似文献   

15.
16.
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis and in the early stages of atherosclerosis. ACAT1 is an integral membrane protein with multiple transmembrane domains. Human ACAT1 contains nine cysteine residues; its activity is severely inhibited by various thiol-specific modification reagents including p-chloromercuribenzene sulfonic acid, suggesting that certain cysteine residue(s) might be near or at the active site. We constructed various ACAT1 mutants that contained either single cysteine to alanine substitution at various positions, contained a reduced number of cysteines, or contained no cysteine at all. Each of these mutants retained 20% or more of the wild-type ACAT activity. Therefore, cysteine is not essential for ACAT catalysis. For the cysteine-free enzyme, its basic kinetic properties and intracellular localization in Chinese hamster ovary cells were shown to be very similar to those of the wild-type enzyme. The availability of the cysteine-free ACAT1 will facilitate future ACAT structure function studies. Additional studies show that Cys467 is one of the major target sites that leads to p-chloromercuribenzene sulfonic acid-mediated ACAT1 inactivation, suggesting that Cys467 may be near the ACAT active site(s).  相似文献   

17.
Murine P388D(1) macrophages exhibit a delayed prostaglandin biosynthetic response when exposed to bacterial lipopolysaccharide (LPS) for prolonged periods of time that is dependent on induction of the genes coding for Group V secretory phospholipase A(2) and cyclooxygenase-2. We herein report that LPS-induced arachidonic acid (AA) metabolite release in P388D(1) macrophages is strongly attenuated by the P2X(7) purinergic receptor antagonists periodate-oxidized ATP and pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid, and this is accompanied by suppression of the expression of both Group V secretory phospholipase A(2) and cyclooxygenase-2. The effect appears to be specific for LPS, because the P2 purinergic receptor antagonists do not affect P388D(1) cell stimulation by other stimuli such as platelet-activating factor or the Ca(2+) ionophore A23187. Moreover, extracellular nucleotides are found to stimulate macrophage AA mobilization with a pharmacological profile that implicates the participation of the P2X(7) receptor and that is inhibited by periodate-oxidized ATP. Collectively these results demonstrate coupling of the P2X(7) receptor to the AA cascade in P388D(1) macrophages and implicate the participation of this type of receptor in LPS-induced AA mobilization.  相似文献   

18.
In the past several years significant advances have been made in our understanding of lecithin-cholesterol acyltransferase (LCAT) function. LCAT beneficially alters the plasma concentrations of apolipoprotein B-containing lipoproteins, as well as HDL. In addition, its proposed role in facilitating reverse cholesterol transport and modulating atherosclerosis has been demonstrated in vivo. Analysis of LCAT transgenic animals has established the importance of evaluating HDL function, as well as HDL plasma levels, to predict atherogenic risk.  相似文献   

19.
In macrophages, the accumulation of cholesteryl esters synthesized by acyl-coenzyme A: cholesterol acyltransferase 1(ACAT1) plays a crucial role in foam cell formation, a hallmark of early atherosclerotic lesions. It is suggested that Chlamydia pneumoniae (C. pneumoniae) induces foam cell formation. However, the mechanism of foam cell formation induced by C. pneumoniae has not been fully elucidated. In this study, we found that C. pneumoniae increased the expression of acyl-coenzyme A: cholesterol acyltransferase 1(ACAT1) mRNA and protein in a dose-dependent manner in THP-1-derived macrophages exposed to low density lipoprotein (LDL). In addition, C. pneumoniae dose-dependently suppressed the expression of peroxisome proliferator-activated receptor gamma (PPAR γ) mRNA and protein. Rosiglitazone, a specific PPAR γ agonist, not only dose-dependently alleviated the down-regulation of PPAR γ expression by C. pneumoniae infection, but also dose-dependently inhibited the C. pneumoniae-induced ACAT1 expression. Furthermore, higher doses of rosiglitazone (10 and 20 μM) suppressed the C. pneumoniae-induced foam cell formation from morphological (Oil red O staining) and biochemical (zymochemistry method) criteria. These results first demonstrate that C. pneumoniae induces macrophage-derived foam cell formation by up-regulating ACAT1 expression via PPAR γ-dependent pathway, which may contribute to its pro-atherogenic properties.  相似文献   

20.
Platelet-activating factor (PAF) binding and metabolism by eight murine and human cell lines was analyzed. Only the murine P388D1 macrophage line had specific, high affinity PAF binding sites. PAF binding reached saturation within 10 min at room temperature and was irreversible. Minimal PAF metabolism was observed at the time binding saturation was achieved. Scatchard analysis of PAF binding revealed a single class of PAF receptors (7872 +/- 1310/cell) which had a dissociation constant of 0.08 +/- 0.01 nM (mean +/- SEM, eta = 6). The dissociation constant was confirmed independently by quantifying the kinetics of initial specific PAF binding. PAF binding was stereospecific, required an sn-2 acetyl substituent, and was inhibited by structurally diverse PAF antagonists including kadsurenone, BN 52021, triazolam, and CV3988. The fact that the receptors are functionally active was shown by the observation that 1 to 100 pM PAF increased free intracellular calcium in P388D1 cells in a dose-related manner. These studies demonstrate that P388D1 macrophages have functional PAF receptors whose affinity and structural specificities are similar to PAF receptors in other cells. The availability of a stable cell line that binds but does not metabolize PAF will greatly facilitate studies of the PAF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号