首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfolobus solfataricus carboxypeptidase, (CPSso), is a heat- and pressure-resistant zinc-metalloprotease. Thanks to its properties, it is an ideal tool for investigating the role of non-covalent interactions in substrate binding. It has a broad substrate specificity as it can cleave any N-blocked amino acid (except for N-blocked proline). Its catalytic and kinetic mechanisms are well understood, and the hydrolytic reaction is easily detectable spectrophotometrically. Here, we report investigations on the pressure- and temperature-dependence of the kinetic parameters (turnover number and Michaelis constant) of CPSso using several benzoyl- and 3-(2-furyl)acryloyl-amino acids as substrates. This approach enabled us to study these parameters in terms of individual rate constants and establish that the release of the free amino acid is the rate-limiting step, making it possible to dissect the individual non-covalent interactions participating in substrate binding. In keeping with molecular docking experiments performed on the 3D model of CPSso available to date, our results show that both hydrophobic and energetic interactions (i.e., stacking and van der Waals) are mainly involved, but their contribution varies strongly, probably due to changes in the conformational state of the enzyme.  相似文献   

2.
The activity and substrate specificity of D-amino acid aminotransferase (D-AAT) (EC 2.6.1.21) can be rationally modulated by replacing the loop core (P119-R120-P121) with glycine chains of different lengths: 1, 3, or 5 glycines. The mutant enzymes were much more active than the wild-type enzyme in the overall reactions between various amino acids and pyruvate. The presteady-state kinetic analyses of half-reactions revealed that the 5-glycine mutant has the highest affinity (Kd) among all mutant enzymes and the wild-type enzyme towards various amino acids except D-aspartate. The 5-glycine mutant was much more efficient as a catalyst than the wild-type enzyme because the mutant enzyme showed the highest value of specificity constant (kmax/Kd) for all amino acids except D-aspartate and D-glutamate. The kmax/Kd values of the three mutants decreased with decrease in glycine chain length for each amino acid examined. Our findings may provide a new approach to rational modulation of enzymes.  相似文献   

3.
Inferring protein functions from structures is a challenging task, as a large number of orphan protein structures from structural genomics project are now solved without their biochemical functions characterized. For proteins binding to similar substrates or ligands and carrying out similar functions, their binding surfaces are under similar physicochemical constraints, and hence the sets of allowed and forbidden residue substitutions are similar. However, it is difficult to isolate such selection pressure due to protein function from selection pressure due to protein folding, and evolutionary relationship reflected by global sequence and structure similarities between proteins is often unreliable for inferring protein function. We have developed a method, called pevoSOAR (pocket-based evolutionary search of amino acid residues), for predicting protein functions by solving the problem of uncovering amino acids residue substitution pattern due to protein function and separating it from amino acids substitution pattern due to protein folding. We incorporate evolutionary information specific to an individual binding region and match local surfaces on a large scale with millions of precomputed protein surfaces to identify those with similar functions. Our pevoSOAR method also generates a probablistic model called the computed binding a profile that characterizes protein-binding activities that may involve multiple substrates or ligands. We show that our method can be used to predict enzyme functions with accuracy. Our method can also assess enzyme binding specificity and promiscuity. In an objective large-scale test of 100 enzyme families with thousands of structures, our predictions are found to be sensitive and specific: At the stringent specificity level of 99.98%, we can correctly predict enzyme functions for 80.55% of the proteins. The overall area under the receiver operating characteristic curve measuring the performance of our prediction is 0.955, close to the perfect value of 1.00. The best Matthews coefficient is 86.6%. Our method also works well in predicting the biochemical functions of orphan proteins from structural genomics projects.  相似文献   

4.
Steady-state and transient kinetic analyses of glutaminyl-tRNA synthetase (GlnRS) reveal that the enzyme discriminates against noncognate glutamate at multiple steps during the overall aminoacylation reaction. A major portion of the selectivity arises in the amino acid activation portion of the reaction, whereas the discrimination in the overall two-step reaction arises from very weak binding of noncognate glutamate. Further transient kinetics experiments showed that tRNA(Gln) binds to GlnRS approximately 60-fold weaker when noncognate glutamate is present and that glutamate reduces the association rate of tRNA with the enzyme by 100-fold. These findings demonstrate that amino acid and tRNA binding are interdependent and reveal an important additional source of specificity in the aminoacylation reaction. Crystal structures of the GlnRS x tRNA complex bound to either amino acid have previously shown that glutamine and glutamate bind in distinct positions in the active site, providing a structural basis for the amino acid-dependent modulation of tRNA affinity. Together with other crystallographic data showing that ligand binding is essential to assembly of the GlnRS active site, these findings suggest a model for specificity generation in which required induced-fit rearrangements are significantly modulated by the identities of the bound substrates.  相似文献   

5.
Rat and human short/branched chain acyl-CoA dehydrogenases exhibit key differences in substrate specificity despite an overall amino acid identity of 85% between them. Rat short/branched chain acyl-CoA dehydrogenases (SBCAD) are more active toward substrates with longer carbon side chains than human SBCAD, whereas the human enzyme utilizes substrates with longer primary carbon chains. The mechanism underlying this difference in substrate specificity was investigated with a novel surface plasmon resonance assay combined with absorbance and circular dichroism spectroscopy, and kinetics analysis of wild type SBCADs and mutants with altered amino acid residues in the substrate binding pocket. Results show that a relatively few amino acid residues are critical for determining the difference in substrate specificity seen between the human and rat enzymes and that alteration of these residues influences different portions of the enzyme mechanism. Molecular modeling of the SBCAD structure suggests that position 104 at the bottom of the substrate binding pocket is important in determining the length of the primary carbon chain that can be accommodated. Conformational changes caused by alteration of residues at positions 105 and 177 directly affect the rate of electron transfer in the dehydrogenation reactions, and are likely transmitted from the bottom of the substrate binding pocket to beta-sheet 3. Differences between the rat and human enzyme at positions 383, 222, and 220 alter substrate specificity without affecting substrate binding. Modeling predicts that these residues combine to determine the distance between the flavin ring of FAD and the catalytic base, without changing the opening of the substrate binding pocket.  相似文献   

6.
The binding of lysine model peptides of the type Lys-X-Lys, Lys-X-X-Lys and Lys-X-X-X-Lys (X = different aliphatic and aromatic amino acids) has been studied by equilibrium dialysis. It was shown that the strong electrostatic binding forces generated by protonated amino groups of lysine can be distinguished from the weak forces stemming from neutral and aromatic spacer amino acids. The overall binding strength of the lysine model peptides is modified by these weak binding forces and the apparent binding constants are influenced more by the hydrophobic character of the spacer amino acid side chains than by the chainlength of the spacers.  相似文献   

7.
8.
Fluorescence anisotropy has been used to monitor the effect of ligands on a mobile loop over the active site of tyrosine hydroxylase. Phe184 in the center of the loop was mutated to tryptophan, and the three native tryptophan residues were mutated to phenylalanine to form an enzyme with a single tryptophan residue in the mobile loop. The addition of 6-methyl-5-deazatetrahydropterin to the enzyme resulted in a significant increase in the fluorescence anisotropy. The addition of phenylalanine did not result in a significant change in the anisotropy in the presence or absence of the deazapterin. The K(d) value for the deazapterin was unaffected by the presence of phenylalanine. Qualitatively similar results were obtained with apoenzyme, except that the addition of phenylalanine led to a slight decrease in anisotropy. Frequency-domain lifetime measurements showed that the distribution of lifetimes was unaffected by both the amino acid and deazapterin. Frequency-domain anisotropy analyses were consistent with a decrease in the motion of the sole tryptophan in the presence of the deazapterin. This could be modeled as a decrease in the cone angle for the indole ring of about 12 degrees . The data are consistent with a model in which binding of a tetrahydropterin results in a change in the conformation of the surface loop required for proper formation of the amino acid binding site.  相似文献   

9.
Malate dehydrogenase: a model for structure, evolution, and catalysis.   总被引:11,自引:0,他引:11       下载免费PDF全文
Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid sequence identity. The coenzyme specificity of malate dehydrogenase may be modulated by substitution of a single residue, as can the substrate specificity. The mechanism of catalysis of malate dehydrogenase is similar to that of lactate dehydrogenase, an enzyme with which it shares a similar 3-dimensional structure. Substitution of a single amino acid residue of a lactate dehydrogenase changes the enzyme specificity to that of a malate dehydrogenase, but a similar substitution in a malate dehydrogenase resulted in relaxation of the high degree of specificity for oxaloacetate. Knowledge of the 3-dimensional structures of malate and lactate dehydrogenases allows the redesign of enzymes by rational rather than random mutation and may have important commercial implications.  相似文献   

10.
The hydrolytic plant enzymes of family 32 of glycoside hydrolases (GH32), including acid cell wall type invertases (EC 3.2.1.26), fructan 1-exohydrolases (1-FEH; EC 3.2.1.153) and fructan 6-exohydrolases (6-FEH; EC 3.2.1.154), are very similar at the molecular and structural levels, but are clearly functionally different. The work presented here aims at understanding the evolution of enzyme specificity and functional diversity in this family by means of site-directed mutagenesis. It is demonstrated for the first time that invertase activity can be introduced in an S101L mutant of chicory (Cichorium intybus) 1-FEH IIa by influencing the orientation of Trp 82. At high sucrose and enzyme concentrations, a shift is proposed from a stable inhibitor configuration to an unstable substrate configuration. In the same way, invertase activity was introduced in Beta vulgaris 6-FEH by introducing an acidic amino acid in the vicinity of the acid-base catalyst (F233D mutant), creating a beta-fructofuranosidase type of enzyme with dual activity against sucrose and levan. As single amino acid substitutions can influence the donor substrate specificity of FEHs, it is predicted that plant invertases and FEHs may have diversified by introduction of a very limited number of mutations in the common ancestor.  相似文献   

11.
12.
The previous notion that the amino acid side chain at position 104 of subtilisins is involved in the binding of the side chain at position P4 of the substrate has been investigated. The amino acid residue Val104 in subtilisin 309 has been replaced by Ala, Arg, Asp, Phe, Ser, Trp and Tyr by site-directed mutagenesis. It is shown that the P4 specificity of this enzyme is not determined solely by the amino acid residue occupying position 104, as the enzyme exhibits a marked preference for aromatic groups in P4, regardless of the nature of the position-104 residue. With hydrophilic amino acid residues at this position, no involvement is seen in binding of either hydrophobic or hydrophilic amino acid residues at position P4 of the substrates. The substrate with Asp in P4 is an exception, as the preference for this substrate is increased dramatically by introduction of an arginine residue at position 104 in the enzyme, presumably due to a substrate-induced conformational change. However, when position 104 is occupied by hydrophobic residues, it is highly involved in binding of hydrophobic amino acid residues, either by increasing the hydrophobicity of S4 or by determining the size of the pocket. The results suggest that the amino acid residue at position 104 is mobile such that it is positioned in the S4 binding site only when it can interact favourably with the substrate's side chain at position P4.  相似文献   

13.
14.
Selenium has been increasingly recognized as an important element in biological systems, which participates in numerous biochemical processes in organisms, notably in enzyme reactions. Selenium can substitute sulfur of cysteine and methionine to form their selenium analogues, selenocysteine (Sec) and selenomethionine (SeM). The nature of amino acid pockets in proteins is dependent on their composition and thus different non-covalent forces determine the interactions between selenium of Sec or SeM and other functional groups, resulting in specific biophysical behavior. The discrimination of selenium toward sulfur has been reported. In order to elucidate the difference between the nature of S-π and Se-π interactions, we performed extensive DFT calculations of dispersive and electrostatic contributions of Se-π interactions in substituted benzenes/hydrogen selenide (H2Se) complexes. The results are compared with our earlier reported S-π calculations, as well as with available experimental data. Our results show a larger contribution of dispersive interactions in Se-π systems than in S-π ones, which mainly originate from the attraction between Se and substituent groups. We found that selenium exhibits a strong interaction with aromatic systems and may thus play a significant role in stabilizing protein folds and protein–inhibitor complexes. Our findings can also provide molecular insights for understanding enzymatic specificity discrimination between single selenium versus a sulfur atom, notwithstanding their very similar chemical properties.  相似文献   

15.
A survey of the field of enzyme electrode probes is presented. Probes for the analysis of over 40 different substrates and 25 different enzymes are described. Some of the basic properties of enzyme electrodes, their response characteristics, sensitivity, lifetime and specificity are likewise discussed, as is the future of such electrodes in the fields of medicine, manufacturing, biology and chemistry.  相似文献   

16.
D Roise  K Soda  T Yagi  C T Walsh 《Biochemistry》1984,23(22):5195-5201
Mechanism-based inactivators were used to probe the active site of the broad specificity amino acid racemase from Pseudomonas striata. Kinetic parameters for the inactivation of the racemase with both stereoisomers of beta-fluoroalanine, beta-chloroalanine, and O-acetylserine were determined. By use of 14C-labeled O-acetylserines, the stoichiometry of inactivator binding was found to be one inactivator bound per enzyme subunit. The PLP-dependent enzyme contains one coenzyme per subunit, and after NaB3H4 reduction of the PLP-imine bond, followed by trypsin digestion of the protein, the amino acid sequence of the PLP-binding peptide was determined. Trypsin digestion of the enzyme labeled with either L or D isomer of O-acetylserine and sequencing of the labeled peptide revealed that the inactivators bind to the same lysine residue which binds PLP in native enzyme. The characterization of a PLP adduct released from inactivated enzyme under some conditions is also described. Implications of the formation of this compound with respect to the overall reaction mechanism of inactivation are discussed.  相似文献   

17.
Tomaymycin reacts covalently with guanine in the DNA minor groove, exhibiting considerable specificity for the flanking bases. The sequence dependence of tomaymycin bonding to DNA was investigated in synthetic DNA oligomers and polymers. The maximum extent of bonding to DNA is greater for homopurine and natural DNA sequences than for alternating purine-pyrimidine sequences. Saturation of DNA with tomaymycin has little effect on the melting temperature in the absence of unbound drug. Fluorescence lifetimes were measured for DNA adducts at seven of the ten unique trinucleotide bonding sites. Most of the adducts had two fluorescence lifetimes, representing two of the four possible binding modes. The lifetimes cluster around 2-3 ns and 5-7 ns; the longer lifetime is the major component for most bonding sites. The two lifetime classes were assigned to R and S diastereomeric adducts by comparison with previous NMR results for oligomer adducts. The lifetime difference between binding modes is interpreted in terms of an anomeric effect on the excited-state proton transfer reaction that quenches tomaymycin fluorescence. Bonding kinetics of polymer adducts were monitored by fluorescence lifetime measurements. Rates of adduct formation vary by two orders of magnitude with poly(dA-dG).poly(dC-dT), reacting the fastest at 4 x 10(-2) M-1 s-1. The sequence specificity of tomaymycin is discussed in light of these findings and other reports in the literature.  相似文献   

18.
Possible variations in the functional lifetimes of herpes simplex virus type 1 mRNA molecules in infected HeLa cells were studied. As shown by the rate of decrease of radioactive amino acid incorporation into viral proteins after the addition of actinomycin, the average lifetime of early viral mRNA's are shorter than those for the late messenger species. In addition, when the viral proteins made after the addition of actinomycin were further analyzed by gel electrophoresis, it was found that messengers for individual viral proteins translated within the early or late time period also had some differences in their functional lifetimes. These results indicate that the synthesis of herpes simplex virus type 1 proteins during the replicative cycle is regulated in part by mechanisms controlling the functional lifetimes of viral mRNA's.  相似文献   

19.
自组装是指分子、纳米级结构材料等基本单元自发地组装成一个稳定而又紧密结构的过程。多肽可在各种非共价驱动力下自组装形成纳米纤维、纳米层状结构、胶束等不同的形貌。因多肽具有氨基酸序列明确、易于合成、便于设计等优势,多肽自组装技术成为了近年来的一个研究热点。有研究表明,对某些多肽类药物进行自组装设计或者使用自组装肽材料作为药物递送的载体,可以解决药物自身存在的半衰期短、水溶性差、生理屏障穿透率低等问题。本文重点介绍了自组装多肽的形成机制、自组装形貌、影响因素、自组装设计方法及其在生物医学领域的主要应用,为多肽的高效利用提供参考。  相似文献   

20.
For the first time, each specificity determining residue (SDR) in the binding site of an antibody has been replaced with every other possible single amino acid substitution, and the resulting mutants analyzed for binding affinity and specificity. The studies were conducted on a variant of the 26-10 antidigoxin single chain Fv (scFv) using in vitro scanning saturation mutagenesis, a new process that allows the high throughput production and characterization of antibody mutants [Burks,E.A., Chen,G., Georgiou,G. and Iverson,B.L. (1997) Proc. Natl Acad. Sci. USA, 94, 412-417]. Single amino acid mutants of 26-10 scFv were identified that modulated specificity in dramatic fashion. The overall plasticity of the antibody binding site with respect to amino acid replacement was also evaluated, revealing that 86% of all mutants retained measurable binding activity. Finally, by analyzing the physical properties of amino acid substitutions with respect to their effect on hapten binding, conclusions were drawn regarding the functional role played by the wild-type residue at each SDR position. The reported results highlight the value of in vitro scanning saturation mutagenesis for engineering antibody binding specificity, for evaluating the plasticity of proteins, and for comprehensive structure-function studies and analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号