首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the course of herpes simplex virus 1 (HSV-1) replication in human epidermoid carcinoma no. 2 cells, the synthesis and glycosylation of host cell proteins ceases and is replaced by the synthesis and glycosylation of virus-specified polypeptides. Analyses of the synthesis of viral glycoproteins show that the glycosylation of viral polypeptides occurs late in the virus growth cycle and that certain of the precursors to major vital glycoproteins are members of the gamma group of polypeptides, i.e., polypeptides synthesized at increasing rates until 12 to 15 h postinfection. Viral glycoproteins are formed by stepwise additions of heterosaccharide chains to completed precursor polypeptides. The precursor and the highly glycosylated product are separable by gel electrophoresis and are localized in different fractions of infected cells. Within 15 min of their synthesis, precursor polypeptides acquire heterosaccharide chains of about 2,000 molecular weight, which contain glucosamine but little or nor fucose or sialic acid. Both precursor and product of this first stage of glycosylation are absent or present in low concentrations in the surface membranes of the infected cell and in the virion. The partially glycosylated product is then conjugated further in a slow, discontinuous process to form the mature glycoprotein of the virion and plasma membrane. These mature products bear large heterosaccharide units with molecular weights greater than 4,000 to 5,000; these contain fucose and sialic acid as well as glucosamine. Heterosaccharide chains from infected and uninfected cells are distributed among discrete size classes and the smallest chains consist of multiple saccharide residues.  相似文献   

2.
The antibiotic tunicamycin, which blocks the synthesis of glycoproteins, inhibited the production of infectious herpes simplex virus. In the presence of this drug, [14C]glucosamine and [3H]mannose incorporation was reduced in infected cells, whereas total protein synthesis was not affected. Gel electrophoresis of [2-3H]mannose-labeled polypeptides failed to detect glycoprotein D or any of the other herpes simplex virus glycoproteins. By use of specific antisera we demonstrated that in the presence of tunicamycin the normal precursors to viral glycoproteins failed to appear. Instead, lower-molecular-weight polypeptides were found which were antigenically and structurally related to the glycosylated proteins. Evidence is presented to show that blocking the addition of carbohydrate to glycoprotein precursors with tunicamycin results in the disappearance of molecules, possibly due to degradation of the unglycosylated polypeptides. We infer that the added carbohydrate either stabilizes the envelope proteins or provides the proper structure for correct processing of the molecules needed for infectivity.  相似文献   

3.
Archaea possess many eukaryote-like properties, including the ability to glycosylate proteins. Using oligosaccharide staining and lectin binding, this study revealed the existence of several glycosylated Haloferax volcanii membrane proteins, besides the previously reported surface layer (S-layer) glycoprotein. While the presence of glycoproteins in archaeal S-layers and flagella is well-documented, few archaeal glycoproteins that are not part of these structures have been reported. The glycosylated 150, 98, 58 and 54 kDa protein species detected were neither precursors nor breakdown products of the 190 kDa S-layer glycoprotein. Furthermore, these novel glycoproteins were outwardly oriented and intimately associated with the membrane.  相似文献   

4.
The Marek's disease herpesvirus (MDHV) B antigen (MDHV-B) was identified and molecularly characterized as a set of three glycoproteins of 100,000, 60,000, and 49,000 apparent molecular weight (gp100, gp60, and gp49, respectively) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation from [35S]methionine-labeled infected cells by specific rabbit antiserum directed against MDHV-B (R alpha B), as previously determined by immunodiffusion. Further identification was accomplished by blocking this immunoprecipitation with highly purified MDHV-B. The same set of three polypeptides was also immunoprecipitated from [35S]methionine- and 14C-labeled infected cells with two other sera shown to have anti-B activity, i.e., rabbit anti-MDHV-infected-cell plasma membrane (R alpha PM) and immune chicken serum from birds naturally infected with MDHV. The three herpesvirus of turkeys (HVT) B-antigen (HVT-B) glycoproteins immunoprecipitated with all three sera containing anti-B activity were also shown to be identical in size to those of MDHV-B by immunoprecipitation and SDS-PAGE. These data serve to clarify the molecular identification of the polypeptides found in common between MDHV and HVT by linking them to MDHV-B, previously identified only by immunodiffusion, and to a similarly sized set of immunologically related common glycoproteins called gp100, gp60, and gp49, detected with monoclonal antibody by other workers. Tunicamycin inhibition of N-linked glycosylation resulted in either nonglycosylated or O-linked glycosylated putative precursors of MDHV-B and HVT-B with apparent molecular weights of 88,000, called pr88, and 44,000, tentatively called pr44, both immunoprecipitable with all three sera. However, the relationships of these two polypeptides to each other and to the overall precursor-processing relationship of the MDHV-B complex remains to be elucidated. The three fully glycosylated B-antigen polypeptides were not connected by disulfide linkage. Collectively, the data presented here and by others support the conclusion that all three glycoproteins now identified as gp100, gp60, and gp49 have MDHV-B determinants. Finally, detection of the same three polypeptides with well-absorbed R alpha PM, which was directed against purified infected-cell plasma membranes, suggests that at least one component of the B-antigen complex has a plasma membrane location in the infected cell.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
In the presence of the antibiotic tunicamycin (TM), glycosylation of herpes simplex virus glycoproteins is inhibited and non-glycosylated polypeptides analogous to the glycoproteins are synthesized (Pizer et al., J. Virol. 34:142-153, 1980). The synthesis of viral proteins and DNA occurs in TM-treated cells. By electron microscopy, nucleocapsids can be observed both in the nucleus and the cytoplasm of TM-treated cells; a small number of enveloped virions were observed on the cell surface. Analyses of the proteins in partially purified virus readily detects viral glycoproteins in the control cells, but neither glycoproteins nor nonglycosylated polypeptide analogs were observed in the virus prepared from TM-treated cells. By labeling the surface of infected cells with 125I, viral glycoproteins were detected as soon as 90 min after infection even when protein synthesis was inhibited with cycloheximide and glycosylation was blocked with TM. Labeling the proteins synthesized in infected cells with [35S]methionine showed that the surface glycoproteins detected in the cycloheximide- and TM-treated cells were not synthesized de novo after infection, but were placed on the cell surface by the infecting virus. Studies with metabolic inhibitors and a temperature-sensitive mutant blocked early in the infectious cycle showed that glycoproteins gA/gB and gD were synthesized soon after infection, but that the synthesis of gC was delayed. Under conditions of infection, in which gC and its precursor pgC are not produced, we have been able to observe the relationships between the glycosylated polypeptides that correspond to pgA/pgB and the nonglycosylated analog made in the presence of TM.  相似文献   

6.
Mouse mammary tumor virus (MMTV) glycoproteins and nonglycosylated polypeptides were purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Primary amino groups were labeled with fluorescamine to enable visualization of MMTV polypeptides in the gels. Protein bands were sliced from the gels and eluted with 90 to 95% recovery. Eight MMTV polypeptides, including three of the major viral components as well as five minor proteins, were routinely obtained. Double diffusion assays and immunoelectrophoresis confirmed the retention of antigenicity identical to that of untreated MMTV virions. Antisera obtained from MMTV-free BALB/c mice immunized with these purified proteins reacted with the polypeptide immunogen as well as with detergent-disrupted MMTV virions from mouse milk or cell culture. Double diffusion assays using the specific mouse antisera failed to detect any cross-reactivity among the isolated polypeptides. A hemagglutination-inhibition assay demonstrated that the ability of MMTV virions to inhibit the hemagglutinating properties of influenza virus resides in the glycosylated polypeptides gp52, gp37.7, and gp33.  相似文献   

7.
The seven major desmosomal polypeptides from isolated bovine muzzle desmosomes ranging from Mr 75 000 to 250 000 were separated by gel electrophoresis, isolated and characterized with respect to their amino acid composition and sugar content. The two largest polypeptides (bands 1 and 2), i.e. desmoplakins I and II, are similar in their amino acid composition, confirming our previous immunological and biochemical data, and display a relatively high glycine content. In contrast, the other two cytoplasmic components also believed to be associated with the desmosomal plaque, i.e. polypeptides of bands 5 (Mr 83 000) and 6 (Mr 75 000), differ significantly in their amino acid composition from the desmoplakins and from each other. All four candidate polypeptides for plaque association, i.e. bands 1, 2, 5, and 6, show no significant glycosylation. The glycoproteins 4a and 4b (Mr 115 000 and 130 000) are similar in their amino acid composition, peptide analysis and immunological reactivity. Both are relatively rich in mannose and galactose but also contain sialic acid. Our determinations also indicate that the two polypeptides differ significantly in their N-acetylglucosamine and mannose content. Most, if not all, of the sugar residues are associated with a water-soluble fragment of Mr 15 500 obtained after limited digestion with V8 protease. The glycopolypeptides obtained in band 3 (Mr 164 000-175 000) are distinct from the glycopolypeptides 4a and 4b in amino acid composition, sugar content, isoelectric pH values, certain antigenic determinants and in their pattern of cleavage products obtained by treatment with proteases or cyanogen bromide. The results identify polypeptides of bands 3, 4a and 4b as glycosylated with characteristic sugar compositions. It is suggested that the major glycoproteins (bands 3, 4a, 4b) of the desmosome are integral membrane components arranged in a special way conferring resistance to detergent treatment. The possible roles of these glycoproteins in cell recognition and in adhesive functions of the desmosome are discussed.  相似文献   

8.
Cell-free translation of pseudorabies virus RNA isolated during the late phase of the infectious cycle yielded a variety of polypeptides. A monoclonal antibody directed against one of the major viral glycoproteins, gA, immunoprecipitated two polypeptides ranging in molecular weight from 78K to 83K. To localize the structural gene for gA, we used cloned BamHI fragments of the viral DNA to select specific mRNA species and immunoprecipitated their in vitro translation products with the anti-gA monoclonal antibody. This allowed us to map the genomic region encoding the mRNA for the gA within the short unique region of the viral genome on BamHI fragments 7 and 12. Additional polypeptides encoded by this region were characterized by their electrophoretic mobility. In three virus strains tested a similar, but strain-specific, pattern of the two gA precursors was found which was not dependent on the host cell or the state of infection after reaching the late phase.  相似文献   

9.
I Virtanen 《Histochemistry》1990,94(4):397-401
Fluorochrome-coupled Helix pomatia agglutinin (HPA), but not other lectin-conjugates with the same nominal specificity, bound specifically to the Golgi apparatus in cultured human fibroblasts, revealing a cytoplasmic juxtanuclear reticular structure. Unlike other Golgi-binding lectins the HPA-conjugates did not bind to the cell surface membrane or pericellular matrix. Experiments with 35S-methionine-labeled cells showed that HPA recognized two glycoproteins of Mr 170,000 and 400,000 among the secreted products of fibroblasts and two major cellular glycoproteins of Mr 40,000 and Mr 180,000 in Triton X-100 extracts of the cells. The two cellular HPA-binding polypeptides were also found in cells depleted of secretory products and in cells pulse-labeled shortly with 35S-methionine and then chased with methionine containing medium up to 12 h. These findings suggest that the two cellular glycoproteins recognized by HPA are retained in the Golgi apparatus and are therefore not precursors of secretory proteins. The results suggest that there are two endogenous, Golgi apparatus-specific glycoproteins in cultured human fibroblasts with terminal non-reducing O-glycosidic N-acetyl galactosaminyl residues.  相似文献   

10.
A total storage protein fraction was prepared from mustard (Sinapis alba L.) seeds via isolated protein bodies and characterized by sedimentation, immunological, and electrophoretic techniques. Mustard seed storage protein consists of three fractions (1) a “legumin-like” 13-S complex composed of two pairs of disulfide-linked polypeptides (16.5 + 28.5 kDa and 19.5 + 34 kDa, respectively) and two single polypeptides (18 kDa and 26 kDa), (2) a “vicilin-like” 9-S complex composed of two glycoproteins (64 kDa and 77 kDa), and (3) two small polypeptides (10 kDa and 11 kDa) which probably represent the 1.7-S complex found in other Cruciferae. In contrast to related species, no glycosylated polypeptide was found in the 13-S complex. Immunological relationships were found between the paired polypeptides of the 13-S complex but not between polypeptides of the 13-S complex and polypeptides of the 9-S complex. Pulse-chase labeling and in vitro translation of polysomal RNA from young embryos demonstrated that the polypeptides of the 13-S complex originate from high molecular mass precursors, except for the 18 kDa polypeptide which appears to be synthesized in its final size. The amino-acid composition of the major polypeptides of the mustard storage protein is given.  相似文献   

11.
1. Platelets have been isolated from plasma and their surface glycoconjugates radioactively-labelled using galactose oxidase and NaB3H4. 2. Conditions have been defined for optimal labelling of glycoproteins and a membrane fraction enriched in plasma membrane has been prepared and characterized by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. Desialylated glycoproteins that act as receptors to peanut agglutinin and lentil lectin have been purified from a detergent extract of plasma membrane. 4. Two glycosylated polypeptides that are able to bind to the surfaces of platelets have been identified and some characteristics of the binding have been investigated.  相似文献   

12.
The identification of eight previously undescribed polypeptides in chicken embryo cells infected with Sindbis virus is reported. Seven of these polypeptides were distinguishable from the virus structural polypeptides and their precursors by their molecular weights and tryptic peptide maps. The eighth was closely related to pE2 (Schlesinger and Schlesinger, 1973), a precursor to one of the virus particle glycoproteins. Pulse-chase experiments and the use of an inhibitor of proteolytic cleavage allowed a division of the seven nonstructural (NS) polypeptides into three stable end products (NS p89, NS p82, and NS p60) and four precursors (p230, p215, p150, and p76). The labeling kinetics after synchronous initiation of translation indicated that synthesis of the NS polypeptides started at a single site and showed that the order of the genes coding for the NS polypeptides was (5' leads to 3') NS p60, NS p89, and NS p82. Short-pulse experiments under conditions of both synchronized and nonsynchronized translation suggested that cleavage of the primary translation product of the NS genes occurred only after its synthesis was completed and that the first cleavage removed the C-terminal polypeptide. From these and other experiments, we propose a detailed scheme for the synthesis and processing of Sindbis virus NS polypeptides.  相似文献   

13.
The biosynthesis and processing of the homodimeric and heterodimeric lectins from the bulbs of garlic (Allium sativum) and ramsons (wild garlic;Allium ursinum) were studied using pulse and pulse-chase labelling experiments on developing bulbs. By combining the results of thein vivo biosynthesis studies and the cDNA cloning of the respective lectins, the sequence of events leading from the primary translation products into the mature lectin polypeptides could be reconstructed. From this it is demonstrated that garlic and ramsons use different schemes of post-translational modifications in order to synthesize apparently similar lectins from totally different precursors. Both the homomeric garlic lectin (ASAII) and its homologue in ramsons (AUAII) are synthesized on the endoplasmic reticulum (ER) as nonglycosylated 13.5 kDa precursors, which, after their transport out of the ER are converted into the mature 12.0 kDa lectin polypeptides by the cleavage of a C-terminal peptide. The heterodimeric garlic lectin ASAI is synthesized on the ER as a single glycosylated precursor of 38 kDa, which after its transport out of the ER undergoes a complex processing which gives rise to two mature lectin subunits of 11.5 and 12.5 kDa. In contrast, both subunits of the heterodimeric ramsons lectin AUAI are synthesized separately on the ER as glycosylated precursors, which after their transport out of the ER are deglycosylated and further processed into the mature lectin polypeptides by the cleavage of a C-terminal peptide.  相似文献   

14.
Antisera to disrupted Rauscher leukemia virus (RLV) or to the purified Rauscher viral 30,000 dalton polypeptide were used to specifically precipitate newly synthesized intracellular viral polypeptides from extracts of infected NIH Swiss mouse cells (JLS-V16). Analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of extracts from cells pulse-labeled for 10–20 min with 35S-methionine showed that immune precipitates contained none of the nonglycosylated internal structural polypeptides of mature viruses. The major viral-specific polypeptides labeled in 10 min included polypeptides of 180,000, 140,000, 110,000, 80,000, and 60,000 daltons with minor polypeptides of 65,000, 50,000, and 40,000 daltons. Labeling the intracellular virus-specific polypeptides with 14C-glucosamine indicated that the 180,000, 110,000, 80,000, and 60,000 dalton polypeptides were glycosylated, and all but the 110,000 dalton polypeptides are contained in the mature virions. Based on pulse-chase experiments, it appears that at least 3 of the large polypeptides (140,000, 65,000, and 50,000 daltons) are precursors to the three major internal structural polypeptides of the mature virions.  相似文献   

15.
Varicella-zoster virus (VZV) codes for approximately eight glycosylated polypeptides in infected cell cultures and in virions. To determine the number of serologically distinct glycoprotein gene products encoded by VZV, we have developed murine monoclonal antibodies to purified virions. Of 10 monoclonal antibodies which can immunoprecipitate intracellular VZV antigens and virion glycoproteins, 1 (termed gA) reacted with gp105, 1 (termed gB) reacted with gp115 (intracellular only), gp62, and gp57, and 8 (termed gC) reacted with gp92, gp83, gp52, and gp45. The anti-gA monoclonal antibody neutralized VZV infectivity in the absence of complement. All eight anti-gC monoclonal antibodies neutralized only in the presence of complement. An anti-gB monoclonal antibody obtained from another laboratory also neutralizes in the absence of complement. Since the above reactivities account for all major detectable VZV glycoprotein species, the data strongly suggest that VZV has three major glycoprotein genes which encode glycosylated polypeptides with neutralization epitopes.  相似文献   

16.
Structural components of influenza C virions.   总被引:11,自引:7,他引:4       下载免费PDF全文
The genome RNA species of influenza type C virions were analyzed by polyacrylamide gel electrophoresis. The pattern obtained was found to resemble those of other influenza viruses. Six RNA species were resolved, with estimated sizes ranging from 0.37 X 10(6) to 1.25 X 10(6) daltons. The internal ribonucleoproteins of influenza C virions were found to sediment heterogeneously in glycerol velocity gradients as demonstrated previously with influenza A/WSN virus. The ribonucleoproteins possessed diameters of 12 to 15 nm, with lengths ranging from 30 to 100 nm. Of the three major virion polypeptides (molecular weights, 88,000, 66,000, and 26,000), only the largest is glycosylated. Similar polypeptide species were present in influenza C virions of five different strains. All three major proteins of influenza C virions possess electrophoretic mobilities distinguishable from those of the major polypeptides of influenza A/WSN. The 66,000-dalton protein is associated with the ribonucleoprotein components. Two additional glycosylated polypeptides, with estimated molecular weights of 65,000 and 30,000, were detected in virions grown in embryonated eggs, but not in virus particles obtained from chicken embryo fibroblasts.  相似文献   

17.
18.
Summary Fluorochrome-coupled Helix pomatia agglutinin (HPA), but not other lectin-conjugates with the same nominal specificity, bound specifically to the Golgi apparatus in cultured human fibroblasts, revealing a cytoplasmic juxtanuclear reticular structure. Unlike other Golgi-binding lectins the HPA-conjugates did not bind to the cell surface membrane or pericellular matrix. Experiments with 35S-methionine-labeled cells showed that HPA recognized two glycoproteins of Mr 170000 and 400000 among the secreted products of fibroblasts and two major cellular glycoproteins of Mr 40000 and Mr 180000 in Triton X-100 extracts of the cells. The two cellular HPA-binding polypeptides were also found in cells depleted of secretory products and in cells pulselabeled shortly with 35S-methionine and then chased with methionine containing medium up to 12 h. These findings suggest that the two cellular glycoproteins recognized by HPA are retained in the Golgi apparatus and are therefore not precursors of secretory proteins. The results suggest that there are two endogenous, Golgi apparatus-specific glycoproteins in cultured human fibroblasts with terminal non-reducing O-glycosidic N-acetyl galactosaminyl residues.  相似文献   

19.
We have found six major polypeptides in virions of the avian coronavirus infectious bronchitis virus grown in tissue culture: four glycoproteins, GP84, GP36, GP31, and GP28, and two non-glycosylated proteins, P51 and P23. In addition, we detected three minor species: two glycoproteins, GP90 and GP59, and one non-glycosylated protein, P14. Two-dimensional tryptic peptide mapping showed that GP36, GP31, GP28, and P23 comprise a group of closely related proteins which we have designated the "P23 family," but that the other proteins are distinct. Analysis by partial proteolytic digestion of P23 family, but that the other proteins are distinct. Analysis by partial proteolytic digestion of the P23 family labeled biosynthetically with [35S] methionine, and P23, labeled with [35S] formyl-methionine by in vitro translation of RNA from infected cells, revealed that the proteins of the P23 family differ in their amino-terminal domains. Similar analysis of GP31 and Gp36 labeled with [3H] mannose showed that the partial proteolytic fragments unique to these proteins were glycosylated. This suggests that differences in glycosylation in the amino-terminal domains contributes to the marked polymorphism os the P23 family. The results are discussed with respect to possible models for synthesis of the virion proteins.  相似文献   

20.
Two of the major glycoproteins of bovine herpesvirus 1 (BHV-1) are gI, a polypeptide complex with apparent molecular weights of 130,000, 74,000, and 55,000, and gIII (a 91,000-molecular-weight [91K] glycoprotein), which also exists as a 180K dimer. Vaccinia virus (VAC) recombinants were constructed which carry full-length gI (VAC-I) or gIII (VAC-III) genes. The genes for gI and gIII were each placed under the control of the early VAC 7.5K gene promoter and inserted within the VAC gene for thymidine kinase. The recombinant viruses VAC-I and VAC-III retained infectivity and expressed both precursor and mature forms of glycoproteins gI and gIII. The polypeptide backbones, partially glycosylated precursors, and mature gI and gIII glycoproteins were indistinguishable from those produced in BHV-1-infected cells. Consequently, they were apparently cleaved, glycosylated, and transported in a manner similar to that seen during authentic BHV-1 infection, although the processing efficiencies of both gI and gIII were generally higher in recombinant-infected cells than in BHV-1-infected cells. Immunofluorescence studies further demonstrated that the mature gI and gIII glycoproteins were transported to and expressed on the surface of cells infected with the respective recombinants. Immunization of cattle with recombinant viruses VAC-I and VAC-III resulted in the induction of neutralizing antibodies to BHV-1, which were reactive with authentic gI and gIII. These data demonstrate the immunogenicity of VAC-expressed gI and gIII and indicate the potential of these recombinant glycoproteins as a vaccine against BHV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号