首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

2.
3.
4.
Cloned animals often suffer from loss of development to term and abnormalities, typically classified under the umbrella term of Large Offspring Syndrome (LOS). Cattle are an interesting species to study because of the relatively greater success rate of nuclear transfer in this species compared with all species cloned to date. The imprinted insulin-like growth factor receptor (IGF2R; mannose-6-phosphate) gene was chosen to investigate aspects of fetal growth and development in cloned cattle in the present study. IGF2R gene expression patterns in identical genetic clones of several age groups were assessed in day 25, day 45, and day 75 fetuses as well as spontaneously aborted fetuses, calves that died shortly after birth and healthy cloned calves using single stranded conformational polymorphism gel electrophoresis. A variable pattern of IGF2R allelic expression in major organs such as the brain, cotyledon, heart, liver, lung, spleen, kidney and intercotyledon was observed using a G/A transition in the 3’UTR of IGF2R. IGF2R gene expression was also assessed by real time RT-PCR and found to be highly variable among the clone groups. Proper IGF2R gene expression is necessary for survival to term, but is most likely not a cause of early fetal lethality or an indicator of postnatal fitness. Contrary to previous reports of the transmission of imprinting patterns from somatic donor cells to cloned animals within organs in the same cloned animal the paternal allele of IGF2R can be imprinted in one tissue while the maternal allele is imprinted in another tissue. This observation has never been reported in any species in which imprinting has been studied.  相似文献   

5.
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16–40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.  相似文献   

6.

Background  

Genomic imprinting occurs in both marsupial and eutherian mammals. The CDKN1C and IGF2 genes are both imprinted and syntenic in the mouse and human, but in marsupials only IGF2 is imprinted. This study examines the evolution of features that, in eutherians, regulate CDKN1C imprinting.  相似文献   

7.
Studies in the mouse have established that both parental genomes are essential for normal embryonic development. Parthenogenetic mouse embryos (which have two maternal genomes and no paternal genome), for example, are growth-retarded and die at early postimplantation stages. The distinct maternal and paternal contributions are mediated by genomic imprinting, an epigenetic mechanism by which the expression of certain genes is dependent on whether they are inherited from mother or father. Although comparative studies have established that many imprinted mouse (and rat) genes are allele-specifically expressed in humans as well (and vice versa), so far imprinting studies have not been performed in other mammalian species. When considering evolutionary theories of genomic imprinting, it would be important to know how widely it is conserved among placental mammals. We have investigated its conservation in a bovid ruminant, the domestic sheep, by comparing parthenogenetic and normal control embryos. Our study establishes that, like in the mouse, parthenogenetic development in sheep is associated with growth-retardation and does not proceed beyond early fetal stages. These developmental abnormalities are most likely caused by imprinted genes. We demonstrate that, indeed, like in mice and humans, the growth-related PEG1/MEST and Insulin-like Growth Factor 2 (IGF2) genes are expressed from the paternal chromosome in sheep. These observations suggest that genomic imprinting is conserved in a third, evolutionarily rather diverged group of placental mammals, the ruminants. Received: 13 May 1998 / Accepted: 16 July 1998  相似文献   

8.
The polar overdominance model of inheritance was proposed to explain the non-Mendelian expression of callipyge muscular hypertrophy in sheep. The callipyge locus (CLPG) maps to the distal portion of ovine Chromosome 18 within the DLK1GTL2 region and corresponds to human Chromosome 14q32, where uniparental disomy (UPD) of the region is associated with multiple congenital anomalies, including growth retardation and obesity. We investigated the porcine DLK1GTL2 region in a cross of two pig breeds to determine if the callipyge polar overdominance is present in another species. Analyses of the parental origin of DLK1 polymorphism in the F2 offspring found that paternal inheritance of DLK1 allele 2 and maternal inheritance of the allele 1 was significantly associated with decreased fat deposition and increased lean muscle mass, while the opposite parental inheritance of these alleles was associated with slower prenatal and postnatal growth. These results suggest that the polar overdominance mode of inheritance is present in the pig chromosomal region that is homologous to the CLPG locus in sheep. Further study in pigs can provide important insights into understanding the molecular regulation of imprinted genes that are associated with human UPD14 and sheep callipyge phenotypes.  相似文献   

9.
10.
As a consequence of parental imprinting in mice, the paternal allele encoding insulin-like growth factor-II (IGF-II) is expressed, whereas the maternal allele is silent in most tissues. To examine whether cis-acting sequences involved in imprinting are located in the vicinity of the lgf-2 gene, we have constructed mouse transgenic lines and studied the expression of a 30 kb rat lgf-2 transgene, in which the coding region has been replaced with the lacZ reporter sequence. Chromatin position effects and/or absence of long-range regulatory elements seem to have affected tissue-specific expression in the transgenic mice. However, in one of six expressing lines, staining of embryos for β-galactosidase activity was detected in a minor subset of tissues normally transcribing the endogenous homolog, but only when the transgene was transmitted paternally. This transgene was integrated into mouse chromosome 19, which is apparently free of imprinted loci. Although the possibility that the lgf-2 transgene was inserted into an as yet unidentified imprinted iocus is discussed, a more likely interpretation of our results is that the transgene carries at least a portion of its own imprinting signal, because it consists of the genomic sequences of a locus already known to be imprinted and maintains the correct imprinting mode. © 1993 Wiley-Liss, Inc.  相似文献   

11.
12.
Allelic expression of IGF2 in marsupials and birds   总被引:12,自引:0,他引:12  
Genomic imprinting, the parent-of-origin- specific expression of genes, has been observed in a variety of eutherian mammals. One gene that has been shown to be imprinted in all eutherians examined is the IGF2 gene. This gene encodes a potent fetal-specific growth factor that is expressed almost exclusively from the paternal chromosome. Several other imprinted genes in the IGF2 pathway are imprinted as well, suggesting that IGF2 is a focal point for the selective pressure leading to imprinted gene expression. This observation is in keeping with a proposal that imprinting arose as the result of a genetic conflict between parents over the allocation of maternal resources to the embryo. One prediction of this model is that imprinting exists in species in which there is at least some contribution of maternal resources to the embryo, and in which polyandry is observed. To test this prediction the allelic expression of the IGF2 gene was examined in two noneutherian species. The IGF2 gene was shown to be expressed in a paternal-specific manner identical to that in eutherians in Monodelphis domestica, a placental South American opossum. In contrast, the IGF2 gene is biallelic in expression in chickens, which are oviparous, and make no postfertilization contribution of maternal resources to the offspring. Received: 24 June 1999 / Accepted: 28 July 1999  相似文献   

13.
Genomic imprinting is widespread amongst mammals, but has not yet been found in birds. To gain a broader understanding of the origin and significance of imprinting, we have characterized three genes, from three separate imprinted clusters in eutherian mammals in the developing fetus and placenta of an Australian marsupial, the tammar wallaby Macropus eugenii. Imprinted gene orthologues of human and mouse p57(KIP2), IGF2 and PEG1/MEST genes were isolated. p57(KIP2) did not show stable monoallelic expression suggesting that it is not imprinted in marsupials. In contrast, there was paternal-specific expression of IGF2 in almost all tissues, but the biased paternal expression of IGF2 in the fetal head and placenta, demonstrates the occurrence of tissue-specific imprinting, as occurs in mice and humans. There was also paternal-biased expression of PEG1/MESTalpha. The differentially methylated region (DMR) of the human and mouse PEG1/MEST promoter is absent in the wallaby. These data confirm the existence of common imprinted regions in eutherians and marsupials during development, but suggest that the regulatory mechanisms that control imprinted gene expression differ between these two groups of mammals.  相似文献   

14.
The SNRPN gene is known to be expressed exclusively from the paternal allele and to map to the critical region for the neurobehavioral disorder, Prader-Willi syndrome (PWS). As a means to investigate the mechanism of imprinting for the SNRPN gene, we have sought to recapitulate the imprinted expression of the endogenous gene. Using an 85-kb murine Snrpn clone, containing 33 kb of 5′ and 30 kb of 3′ flanking DNA, we obtained two intact transgenic lines. One line, containing two copies of the Snrpn transgene, recapitulated the imprinted expression pattern of the endogenous locus, whereas the other transgenic line, containing a single copy, was expressed upon both maternal and paternal inheritance. This suggests that a 6.6-kb region of maternal-specific DNA methylation that we have identified may be sufficient to confer imprinted expression, but not in a copy-number independent manner. Finally, we produced five lines of transgenic mice using a 76-kb human SNRPN clone containing 45 kb and 7 kb of 5′ and 3′ flanking DNA, respectively. We found all the lines were expressed upon both maternal and paternal inheritance, regardless of copy number, suggesting that the imprinting machinery in mouse and human may have diverged. Received: 11 November 1998 / Accepted: 29 January 1999  相似文献   

15.
The imprinted insulin-like growth factor-2 (IGF2) gene is an auto/paracrine growth factor expressed only from the paternal allele in adult tissues. In tissues susceptible to aging-related cancers, including the prostate, a relaxation of IGF2 imprinting is found, suggesting a permissive role for epigenetic alterations in cancer development. To determine whether IGF2 imprinting is altered in cellular aging and senescence, human prostate epithelial and urothelial cells were passaged serially in culture to senescence. Allelic analyses using an IGF2 polymorphism demonstrated a complete conversion of the IGF2 imprint status from monoallelic to biallelic, in which the development of senescence was associated with a 10-fold increase in IGF2 expression. As a mechanism, a 2-fold decrease in the binding of the enhancer-blocking element CCCTC-binding factor (CTCF) within the intergenic IGF2-H19 region was found to underlie this switch to biallelic IGF2 expression in senescent cells. This decrease in CTCF binding was associated with reduced CTCF expression in senescent cells. No de novo increases in methylation at the IGF2 CTCF binding site were seen. The forced down-regulation of CTCF expression using small interfering RNA in imprinted prostate cell lines resulted in an increase in IGF2 expression and a relaxation of imprinting. Our data suggest a novel mechanism for IGF2 imprinting regulation, that is, the reduction of CTCF expression in the control of IGF2 imprinting. We also demonstrate that altered imprinting patterns contribute to changes in gene expression in aging cells.  相似文献   

16.
17.
18.
19.
Human uniparental gestations such as gynogenetic ovarian teratomas and androgenetic complete hydatidiform moles provide a model to evaluate the integrity of parent-specific gene expression--i.e., imprinting--in the absence of a complementary parental genetic contribution. We studied expression, in these tissues, of the oppositely imprinted genes H19, which is an embryonic nontranslated RNA, and insulin-like growth factor type 2 (IGF2). Normal gestations only express H19 from the maternal allele and express IGF2 from the paternal allele, whereas neither is expressed from the maternal genome of gynogenetic gestations, and both are expressed from the paternal genome of androgenetic gestations. Coexpression of H19 and IGF2 in the androgenetic tissues was in a single population of cells, mononuclear trophoblast--the same cell type expressing these genes in biparental placentas. These results demonstrate that a biparental genome may be required for expression of the reciprocal IGF2/H19 imprint. Alternatively, biparental expression may be a normal feature of some imprinted genes in specific cell types. Additional experiments with other imprinted genes will clarify whether this reflects global failure of the imprinting process or a change specific to the IGF2/H19 locus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号