首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Evolutionary history of the Coccolithoviridae   总被引:1,自引:0,他引:1  
We recently determined the genome sequence of the Coccolithoviridae strain Emiliania huxleyi virus 86 (EhV-86), a giant double-stranded DNA (dsDNA) algal virus from the family Phycodnaviridae that infects the marine coccolithophorid E. huxleyi. Here, we determine the phylogenetic relationship between EhV-86 and other large dsDNA viruses. Twenty-five core genes common to nuclear-cytoplasmic large dsDNA virus genomes were identified in the EhV-86 genome; sequence from eight of these genes were used to create a phylogenetic tree in which EhV-86 was placed firmly with the two other members of the Phycodnaviridae. We have also identified a 100-kb region of the EhV-86 genome which appears to have transferred into this genome from an unknown source. Furthermore, the presence of six RNA polymerase subunits (unique among the Phycodnaviridae) suggests both a unique evolutionary history and a unique lifestyle for this intriguing virus.  相似文献   

3.
The Coccolithoviridae are a recently discovered group of viruses that infect the marine coccolithophorid Emiliania huxleyi. Emiliania huxleyi virus 203 (EhV-203) has a 160- to 180-nm-diameter icosahedral structure and a genome of approximately 400 kbp, consisting of 464 coding sequences (CDSs). Here we describe the genomic features of EhV-203 together with a draft genome sequence and its annotation, highlighting the homology and heterogeneity of this genome in comparison with the EhV-86 reference genome.  相似文献   

4.
Emiliania huxleyi virus 202 (EhV-202) is a member of the Coccolithoviridae, a group of viruses that infect the marine coccolithophorid Emiliania huxleyi. EhV-202 has a 160- to 180-nm-diameter icosahedral structure and a genome of approximately 407 kbp, consisting of 485 coding sequences (CDSs). Here we describe the genomic features of EhV-202, together with a draft genome sequence and its annotation, highlighting the homology and heterogeneity of this genome in comparison with the EhV-86 reference genome.  相似文献   

5.
The Coccolithoviridae are a group of viruses which infect the marine coccolithophorid microalga Emiliania huxleyi. The Emiliania huxleyi viruses (known as EhVs) described herein have 160- to 180-nm diameter icosahedral structures, have genomes of approximately 400 kbp, and consist of more than 450 predicted coding sequences (CDSs). Here, we describe the genomic features of four newly sequenced coccolithoviruses (EhV-88, EhV-201, EhV-207, and EhV-208) together with their draft genome sequences and their annotations, highlighting the homology and heterogeneity of these genomes to the EhV-86 model reference genome.  相似文献   

6.
7.
海洋球石藻(Coccolithophores)是一种全球广泛分布且具有重要生态功能的真核浮游植物,有些种类是大洋和近岸常见的赤潮种。自然海域中,病毒感染是导致球石藻死亡和赤潮消亡的一个关键因素。基于一株海洋球石藻Emiliania huxleyi及其特异性裂解病毒全基因组测序注释的结果,研究者们发现病毒可能通过基因横向转移从宿主基因组中获取了一系列与鞘脂类代谢相关的关键酶基因,进而在一定程度上掌控了宿主鞘脂类代谢,大量合成、积累病毒性鞘脂类物质,并最终诱导宿主细胞以凋亡的形式死亡。因此,病毒介导的宿主鞘脂类代谢在调节病毒与宿主间相互作用中具有重要意义。本文着重综述海洋球石藻病毒与宿主间的基因横向转移、病毒介导的宿主鞘脂类代谢特点及其生态学意义,以期深入了解海洋球石藻病毒与宿主间复杂的相互作用关系。  相似文献   

8.
9.
The intracellular routes of sphingolipid trafficking are related to the compartmentalized nature of sphingolipid metabolism, with synthesis beginning in the endoplasmic reticulum, continuing in the Golgi apparatus, and degradation occurring mainly in lysosomes. Whereas bulk sphingolipid transport between subcellular organelles occurs primarily via vesicle-mediated pathways, evidence is accumulating that sphingolipids are found in subcellular organelles that are not connected to each other by vesicular flow, implying additional trafficking routes. After discussing how sphingolipids are transported through the secretory pathway, I will review evidence for sphingolipid metabolism in organelles such as the mitochondria, and then discuss how this impacts upon our current understanding of the regulation of intracellular sphingolipid transport.  相似文献   

10.
The intracellular routes of sphingolipid trafficking are related to the compartmentalized nature of sphingolipid metabolism, with synthesis beginning in the endoplasmic reticulum, continuing in the Golgi apparatus, and degradation occurring mainly in lysosomes. Whereas bulk sphingolipid transport between subcellular organelles occurs primarily via vesicle-mediated pathways, evidence is accumulating that sphingolipids are found in subcellular organelles that are not connected to each other by vesicular flow, implying additional trafficking routes. After discussing how sphingolipids are transported through the secretory pathway, I will review evidence for sphingolipid metabolism in organelles such as the mitochondria, and then discuss how this impacts upon our current understanding of the regulation of intracellular sphingolipid transport.  相似文献   

11.
12.
Sphingolipid metabolites have become recognized for their participation in cell functions and signaling events that control a wide array of cellular activities. Two main sphingolipids, ceramide and sphingosine-1-phosphate, are involved in signaling pathways that regulate cell proliferation, apoptosis, motility, differentiation, angiogenesis, stress responses, protein synthesis, carbohydrate metabolism, and intracellular trafficking. Ceramide and S1P often exert opposing effects on cell survival, ceramide being pro-apoptotic and S1P generally promoting cell survival. Therefore, the conversion of one of these metabolites to the other by sphingolipid enzymes provides a vast network of regulation and provides a useful therapeutic target. Here we provide a survey of the current knowledge of the roles of sphingolipid metabolites in cancer and in lipid storage disease. We review our attempts to interfere with this network of regulation and so provide new treatments for a range of diseases. We synthesized novel analogs of sphingolipids which inhibit the hydrolysis of ceramide or its conversion to more complex sphingolipids. These analogs caused elevation of ceramide levels, leading to apoptosis of a variety of cancer cells. Administration of a synthetic analog to tumor-bearing mice resulted in reduction and even disappearance of the tumors. Therapies for sphingolipid storage diseases, such as Niemann-Pick and Gaucher diseases were achieved by two different strategies: inhibition of the biosynthesis of the substrate (substrate reduction therapy) and protection of the mutated enzyme (chaperone therapy). Sphingolipid metabolism was monitored by the use of novel fluorescent sphingolipid analogs. The results described in this review indicate that our synthetic analogs could be developed both as anticancer drugs and for the treatment of sphingolipid storage diseases.  相似文献   

13.
The importance of sphingolipids in membrane biology was appreciated early in the twentieth century when several human inborn errors of metabolism were linked to defects in sphingolipid degradation. The past two decades have seen an explosion of information linking sphingolipids with cellular processes. Studies have unraveled mechanistic details of the sphingolipid metabolic pathways, and these findings are being exploited in the development of novel therapies, some now in clinical trials. Pioneering work in yeast has laid the foundation for identifying genes encoding the enzymes of the pathways. The advent of the era of genomics and bioinformatics has led to the identification of homologous genes in other species and the subsequent creation of animal knock-out lines for these genes. Discoveries from these efforts have re-kindled interest in the role of sphingolipids in membrane biology. This review highlights some of the recent advances in understanding sphingolipids' roles in membrane biology as determined from genetic models.  相似文献   

14.
We describe recent advances in understanding sphingolipid functions and metabolism in the baker’s yeast Saccharomyces cerevisiae. One milestone has been reached in yeast sphingolipid research with the complete or nearly complete identification of genes involved in sphingolipid synthesis and breakdown. Other advances include roles for sphingolipid long-chain bases as signaling molecules that regulate growth, responses to heat stress, cell wall synthesis and repair, endocytosis and dynamics of the actin cytoskeleton. We touch briefly on other sphingolipid functions so that readers unfamiliar with the field will gain a broader view of sphingolipid research. These functions include roles in protein trafficking/exocytosis, lipid rafts or microdomains, calcium homeostasis, longevity and cellular aging, nutrient uptake, cross-talk with other lipids and the interaction of sphingolipids and antifungal drugs.  相似文献   

15.
Sphingolipids constitute a biologically active lipid class that is significantly important from both structural and regulatory aspects. The manipulation of sphingolipid metabolism is currently being studied as a novel strategy for cancer therapy. The basics of this therapeutic approach lie in the regulation property of sphingolipids on cellular processes, which are important in a cell's fate, such as cell proliferation, apoptosis, cell cycle arrest, senescence, and inflammation. Furthermore, the mutations in the enzymes catalyzing some specific reactions in the sphingolipid metabolism cause mortal lysosomal storage diseases like Fabry, Gaucher, Niemann-Pick, Farber, Krabbe, and Metachromatic Leukodystrophy. Therefore, the alteration of the sphingolipid metabolic pathway determines the choice between life and death. Understanding the sphingolipid metabolism and regulation is significant for the development of new therapeutic approaches for all sphingolipid-related diseases, as well as for cancer. An important feature of the sphingolipid metabolic pathway is the compartmentalization into endoplasmic reticulum, the Golgi apparatus, lysosome and plasma membrane, and this compartmentalization makes the transport of sphingolipids critical for proper functioning. This paper focuses on the structures, metabolic pathways, localization, transport mechanisms, and diseases of sphingolipids in Saccharomyces cerevisiae and humans, and provides the latest comprehensive information on sphingolipid research.  相似文献   

16.
Sphingolipids play a key role in cells as structural components of membrane lipid bilayers and signaling molecules implicated in important physiological and pathological processes. Their metabolism is tightly regulated. Mechanisms controlling sphingolipid metabolism are far from being completely understood. However, they already reveal the integration of sphingolipids in the whole metabolic network as signaling devices that coordinate different metabolic pathways. A picture of sphingolipids integrated into metabolic networks might help to understand sphingolipid homeostasis. This review describes recent advances in the regulation of de novo sphingolipid synthesis with a focus on the bridges that exist with other metabolic pathways and the importance of this crosstalk in the control of sphingolipid homeostasis. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

17.
De novo sphingolipid synthesis is required for the exit of glycosylphosphatidylinositol (GPI)-anchored membrane proteins from the endoplasmic reticulum in yeast. Using a pharmacological approach, we test the generality of this phenomenon by analyzing the transport of GPI-anchored cargo in widely divergent eukaryotic systems represented by African trypanosomes and HeLa cells. Myriocin, which blocks the first step of sphingolipid synthesis (serine + palmitate --> 3-ketodihydrosphingosine), inhibited the growth of cultured bloodstream parasites, and growth was rescued with exogenous 3-ketodihydrosphingosine. Myriocin also blocked metabolic incorporation of [3H]serine into base-resistant sphingolipids. Biochemical analyses indicate that the radiolabeled lipids are not sphingomyelin or inositol phosphorylceramide, suggesting that bloodstream trypanosomes synthesize novel sphingolipids. Inhibition of de novo sphingolipid synthesis with myriocin had no adverse effect on either general secretory trafficking or GPI-dependent trafficking in trypanosomes, and similar results were obtained with HeLa cells. A mild effect on endocytosis was seen for bloodstream trypanosomes after prolonged incubation with myriocin. These results indicate that de novo synthesis of sphingolipids is not a general requirement for secretory trafficking in eukaryotic cells. However, in contrast to the closely related kinetoplastid Leishmania major, de novo sphingolipid synthesis is essential for the viability of bloodstream-stage African trypanosomes.  相似文献   

18.
The Coccolithoviridae is a recently discovered group of viruses that infect the marine coccolithophorid Emiliania huxleyi. Emiliania huxleyi virus 84 (EhV-84) has a 160 -180 nm diameter icosahedral structure and a genome of approximately 400 kbp. Here we describe the structural and genomic features of this virus, together with a near complete draft genome sequence (~99%) and its annotation. This is the fourth genome sequence of a member of the coccolithovirus family.  相似文献   

19.
Our knowledge of sphingolipid metabolism and function in Saccharomyces cerevisiae is growing rapidly. Here we discuss the current status of sphingolipid metabolism including recent evidence suggesting that exogenous sphingoid long-chain bases must first be phosphorylated and then dephosphorylated before incorporation into ceramide. Phenotypes of strains defective in sphingolipid metabolism are discussed because they provide hints about the undiscovered functions of sphingolipids and are one of the major reasons for studying this model eukaryote. The long-chain base phosphates, dihydrosphingosine-1-phosphate and phytosphingosine-1-phosphate, have been hypothesized to play roles in heat stress resistance, perhaps acting as signaling molecules. We evaluate the data supporting this hypothesis and suggest future experiments needed to verify it. Finally, we discuss recent clues that may help to reveal how sphingolipid synthesis and total cellular sphingolipid content are regulated.  相似文献   

20.
Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号