首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between locomotor behavior and long bone structural proportions is examined in 179 individuals and 13 species of hominoids and cercopithecoids. Articular surface areas, estimated from linear caliper measurements, and diaphyseal section moduli (strengths), determined from CT scans, were obtained for the femur, tibia, humerus, radius, and ulna. Both within-bone (articular to shaft) and between-bone (forelimb to hindlimb) proportions were calculated and compared between taxa. It was hypothesized that: 1) species emphasizing slow, cautious movement and/or more varied limb positioning (i.e., greater joint excursion) would exhibit larger articular to cross-sectional shaft proportions, and 2) species with more forelimb suspensory behavior would have relatively stronger/larger forelimbs, while those with more leaping would have relatively stronger/larger hindlimbs. The results of the analysis generally confirm both hypotheses. Several partial exceptions can be explained on the basis of more detailed structural-functional considerations. Associations between locomotion and structural proportions can be demonstrated both across major groupings (hominoids and cercopithecoids) and between relatively closely related taxa, e.g., mountain and lowland gorillas, siamangs and gibbons, and Trachypithecus and other colobines. Furthermore, structure and function do not always covary with taxonomy. For example, compared to cercopithecoids, mountain gorillas have relatively larger joints, like other hominoids, but do not have relatively stronger forelimbs, unlike other hominoids. This is consistent with a locomotor repertoire emphasizing relatively slow movement but with very little forelimb suspension. Proportions of Proconsul nyanzae, Proconsul heseloni, Morotopithecus bishopi, and Theropithecus oswaldi are compared with modern distributions to illustrate the application of the techniques to fossil taxa.  相似文献   

2.
Evolution of the pseudoautosomal boundary in Old World monkeys and great apes   总被引:12,自引:0,他引:12  
Mammalian sex chromosomes are divided into sex-specific and pseudoautosomal regions. Sequences in the pseudoautosomal region recombine between the sex chromosomes; the sex-specific sequences normally do not. The interface between sex-specific and pseudoautosomal sequences is the pseudoautosomal boundary. The boundary is the centromeric limit to recombination in the pseudoautosomal region. In man, an Alu repeat element is found inserted at the boundary on the Y chromosome. In the evolutionary comparison conducted here, the Alu repeat element is found at the Y boundary in great apes, but it is not found there in two Old World monkeys. During the evolution of the Old World monkey and great ape lineages, homology between the sex chromosomes was maintained by recombination in the sequences telomeric to the Alu insertion site. The Alu repeat element did not create the present-day boundary; instead, it inserted at the preexisting boundary after the Old World monkey and great ape lineages diverged.  相似文献   

3.
The past ten years have witnessed major changes in reconstructions of the history of Old World monkeys, most of them driven by new material of the Miocene monkey Victoriapithecus from Maboko Island, Kenya. Before the mid-1980s, predictions about the morphological and ecological adaptations of the earliest cercopithecoids relied heavily on evidence from extant colobine and cercopithecine monkeys. It was argued that the earliest cercopithecoids were largely or at least partly folivorous, had short colobine-like faces, and were arboreal. The only studies suggesting that some of these arguments were not true were based on limited knowledge of the anatomy of Victoriapithecus. The presence of semi-terrestrial adaptations in middle Miocene monkeys hinted to some that early monkeys may not have been arboreal. Others attempted to cope with the discrepancy between neontological predictions and the fossil evidence by proposing that limb bones with stronger terrestrial adaptations within the Maboko sample were derived cercopithecine remains, while those with more arboreal features belonged in the subfamily Colobinae and should be regarded as primitive.  相似文献   

4.
The traditional focus on morphological rather than mechanical units has obscured some significant functional differences in the hindlimbs of primates. This paper examines the allometric and biomechanical basis for some distinctive proportional differences among pairs of morphological units in the hindlimb, and especially the foot, of cercopithecid primates. Five major conclusions are reached. First, many hindlimb dimensions scale allometrically with body mass to maintain mechanical similarity within taxonomic and locomotor groups. Therefore, the majority of traditional indices which describe the shape of the foot within cercopithecids reveal differences which are primarily a function of size. Second, the hindlimb segments in colobines, and especially in Presbytis, are relatively long, probably to enhance leaping. Third, the major distinction of terrestrial cercopithecines among the features analysed is reduction in the length of the phalanges, due to the reduced importance of grasping during locomotion and the assumption of digitigrady. Fourth, Theropithecus and male Erythrocebus have high crural indices, relative to their body masses, which can facilitate curosoriality. Female E. patas already has a high crural index as a function of its body mass. Fifth, macaques form a distinctive group among cercopithecines, characterized by relatively short hindlimbs. Relatively very short hindlimbs in Macaca fuscata and M. thibetana suggest that climatic conditions can have an added effect on the lengths of the hindlimb segments. In summary, this analysis of the lengths of the hindlimb segments relative to body size reveals taxonomic differences which are due in part to phylogeny, to differences in locomotor behavior, and to substrate use.  相似文献   

5.
6.
Body mass is a critical variable in many hominin evolutionary studies, with implications for reconstructing relative brain size, diet, locomotion, subsistence strategy, and social organization. We review methods that have been proposed for estimating body mass from true and trace fossils, consider their applicability in different contexts, and the appropriateness of different modern reference samples. Recently developed techniques based on a wider range of modern populations hold promise for providing more accurate estimates in earlier hominins, although uncertainties remain, particularly in non-Homo taxa. When these methods are applied to almost 300 Late Miocene through Late Pleistocene specimens, the resulting body mass estimates fall within a 25–60 kg range for early non-Homo taxa, increase in early Homo to about 50–90 kg, then remain constant until the Terminal Pleistocene, when they decline.  相似文献   

7.
Recent Miocene fossil discoveries of large hominoids resemble orangutans. Since the evolution of large body size was functionally related to a powerful masticatory system in Miocene ape radiations, a better understanding of adaptations in extant orangutans will be informative of hominoid evolution. It is suggested here, based on the behavioral ecology of extant orangutans, that foraging energetics and large body size are tied to a dietary shift that provided access to and utilization of resources not generally available to other primates.  相似文献   

8.
We have used two-dimensional polyacrylamide gel electrophoresis (PAGE) to study the plasma and hepatic apoE isoproteins of nonhuman primates and have compared them with their human counterparts. We have found that apoE obtained from fresh monkey or ape plasma, as well as nascent apoE synthesized by perfused monkey livers, is composed of several isoproteins that resemble the homozygous (beta) apoE phenotype observed in humans. The nonhuman primate plasma apoE pattern of 90 animals from nine different species consisted of a major isoprotein designated apoE3 and a few minor isoproteins. A group of acidic apoE isoproteins is eliminated after treatment with C. perfringens neuraminidase and has been designated sialo apoE (apoEs). Nonhuman primate liver apoE isoproteins comigrate with their plasma apoE isoprotein counterparts on two-dimensional PAGE, but hepatic apoE is enriched in sialo apoE isoproteins when compared to plasma apoE. The apparent molecular weight of asialo and sialo apoE obtained from Old World monkeys and apes is identical to the molecular weight of the corresponding human isoproteins (E3 = 38K, Es = 38.5-39.5K). However, the apparent molecular weight of apoE isoproteins obtained from New World monkeys is increased by approximately 0.5K (E3 = 38.5K, Es = 39.0-40.0K) as compared to the molecular weight of human and Old World monkey and ape isoproteins. The isoelectric points of apoE3 obtained from Old World monkeys, New World monkeys, chimpanzees, and gibbons are 5.74, 5.76, 5.95, and 5.89, respectively. The entire New or Old World monkey, chimpanzee, and gibbon apoE pattern is shifted by approximately -2.0, -0.5, and -1.0 charges, respectively, relative to the pattern of the corresponding human E3/3 phenotype. The molecular weight difference in apoE observed among New and Old World monkeys, as well as the molecular weight and/or charge differences observed among monkey, ape, and human apoE are consistent with structural changes in the apoE gene which have occurred following the divergence of the different species. The observation of only the homozygous apoE phenotypes in all animals studied suggests that the common apoE genetic polymorphism recently described in humans may not be present in nonhuman primates.  相似文献   

9.
A study was undertaken of a unique sample of 63 wild vervet monkeys Cercopithecus aethiops from a single population in Uganda collected over 35 days in 1947. Twenty-five were immature (12 females and 13 males) and 38 were adults (16 females and 22 males). Body mass, external measurements, masticatory and other masses were recorded for each individual at the time of collection, and for a few specimens, the development of the reproductive organs. Each individual was evaluated for cranial capacity, limb length and dental eruption. The comparison of immature and adult animals illustrates the mosaic nature of growth in the different body systems, as well as female–male differences. An ancestral model is proposed for catarrhine growth and development, with particular reference to sex differences. This model provides a framework for assessment of immatures and for the reconstruction of socio-ecological effects on life-history stages in populations of fossil monkeys, apes and early hominids.  相似文献   

10.
Body mass index (BMI, weight (kg)/height (m)(2)) is the most widely used weight-height index worldwide. This universal use of BMI assumes that the rationale for its use is universally applicable. We examine two possible rationales for using BMI as a universal measure. The first rationale is that BMI is strongly correlated with weight, but is independent of height. The second rationale is that BMI correctly captures the relationship between weight and height, which implies that the slope of log weight regressed on log height is 2. We examined the weight-height relationship in 25 diverse population samples of men and women from the US, Europe, and Asia. The analysis included 72 subgroups with a total of 385,232 adults aged 25 years and older. Although BMI was highly correlated with weight in all studies, a significant, negative correlation between BMI and height was found in 31 out of 40 subgroups of men (r=-0.004 to -0.133) and 32 of 32 groups of women (r=-0.016 to -0.205). When log weight was regressed on log height, the 95% confidence intervals (CI) of the slopes did not include 2 in 25 out of 40 male subgroups. The summary estimate of the slopes across studies of men was 1.92 (95% CI, 1.87-1.97). For women, slopes were lower than 2 in 28 of 32 subgroups with a summary estimate of 1.45 (95% CI, 1.39-1.51). In most of the populations, BMI is not independent of height; weight does not universally vary with the square of height; and the relationship between weight and height differs significantly between males and females. The use of a single BMI standard for both men and women cannot be justified on the basis of weight-height relationships.  相似文献   

11.
We measured whole body bone, fat and lean mass, by dual-energy x-ray absorptiometry, of third-grade children in a suburban public school district adjacent to Detroit. Of 1,340 eligible children, 773 participated. Using U.S. Census categories, parents identified their children as black/African-American (57%), white (38%), or one of several other categories (5%). Some of the participants also identified with a relatively large Middle Eastern subgroup (Chaldeans). Of the 773 participants, 734 are included in this report (71 Chaldeans, 226 whites, and 437 black/African-Americans; other categories are omitted). We describe body size, body composition, and physical activity levels in the three groups. The Chaldean and black children have significantly higher average whole body bone mineral content (BMC) than whites (P > 0.05), but are not different from each other. Lean mass and height are significantly greater for Chaldeans and blacks than for whites. The ratio of BMC to height was also significantly greater in Chaldeans and blacks compared with whites. Chaldeans have a significantly higher weight and fat mass than either the black or white children, and report significantly less physical activity than either the white or the black children. The higher bone mass among the Chaldean children may be partially explained by their greater body mass, but there is no readily apparent explanation for the observed ethnic differences in body size. We cannot exclude genetic or environmental factors not evaluated in this observational study. Our unexpected finding that Chaldean children, when analyzed as a separate group, are more similar in body composition to black/African-American than to white children contributes to a growing body of literature indicating that the uncritical use of “race” categories may obscure rather than facilitate the identification of population differences. Am J Phys Anthropol 103:157–162, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
A comparison of the distribution of brain monoamine neurons in several New World and Old World monkeys was undertaken using the Falck-Hillarp formaldehyde histofluorescence technique. The overall organization of the monoamine neurons was very similar in all species, although subtle variations were found. Catecholamine (noradrenaline and dopamine) and indoleamine (serotonin) cell bodies corresponding to groups A1–A7, A8–A10, and B1–B9, respectively were found throughout the brainstem. A few catecholamine (dopamine) cells equivalent to groups All and A12 in the diencephalon were also observed. Noradrenaline neurons, rather than those of the dopamine and serotonin systems, tended to be less numerous in the New World monkeys. Ascending catecholamine and indoleamine fiber bundles were observed in most monkeys. It is interesting that fibers corresponding to the “ventral noradrenaline bundle” appeared to be much finer in the common marmoset and tamarin than in other species. In addition, a substantial catecholamine (noradrenaline) innervation of the diencephalon was noted in all the Old World monkeys, while a much lower overall terminal density was apparent in the New World forms.  相似文献   

13.
Postcranial pneumaticity has been reported in numerous extinct sauropsid groups including pterosaurs, birds, saurischian dinosaurs, and, most recently, both crurotarsan and basal archosauriform taxa. By comparison with extant birds, pneumatic features in fossils have formed the basis for anatomical inferences concerning pulmonary structure and function, in addition to higher-level inferences related to growth, metabolic rate, and thermoregulation. In this study, gross dissection, vascular and pulmonary injection, and serial sectioning were employed to assess the manner in which different soft tissues impart their signature on the axial skeleton in a sample of birds, crocodylians, and lizards. Results from this study indicate that only cortical foramina or communicating fossae connected with large internal chambers are reliable and consistent indicators of pneumatic invasion of bone. As both vasculature and pneumatic diverticula may produce foramina of similar sizes and shapes, cortical features alone do not necessarily indicate pneumaticity. Noncommunicating (blind) vertebral fossae prove least useful, as these structures are associated with many different soft-tissue systems. This Pneumaticity Profile (PP) was used to evaluate the major clades of extinct archosauriform taxa with purported postcranial pneumaticity. Unambiguous indicators of pneumaticity are present only in certain ornithodiran archosaurs (e.g., sauropod and theropod dinosaurs, pterosaurs). In contrast, the basal archosauriform Erythrosuchus africanus and other nonornithodiran archosaurs (e.g., parasuchians) fail to satisfy morphological criteria of the PP, namely, that internal cavities are absent within bone, even though blind fossae and/or cortical foramina are present on vertebral neural arches. An examination of regional pneumaticity in extant avians reveals remarkably consistent patterns of diverticular invasion of bone, and thus provides increased resolution for inferring specific components of the pulmonary air sac system in their nonavian theropod ancestors. By comparison with well-preserved exemplars from within Neotheropoda (e.g., Abelisauridae, Allosauroidea), the following pattern emerges: pneumaticity of cervical vertebrae and ribs suggests pneumatization by lateral vertebral diverticula of a cervical air sac system, with sacral pneumaticity indicating the presence of caudally expanding air sacs and/or diverticula. The identification of postcranial pneumaticity in extinct taxa minimally forms the basis for inferring a heterogeneous pulmonary system with distinct exchange and nonexchange (i.e., air sacs) regions. Combined with inferences supporting a rigid, dorsally fixed lung, osteological indicators of cervical and abdominal air sacs highlight the fundamental layout of a flow-through pulmonary apparatus in nonavian theropods.  相似文献   

14.
In an attempt to reveal factors associated with neocortical development in monkeys and apes (anthropoids), relationships between the relative size of the neocortex and differences in ecology and social structure were examined for 24 genera of 11 subfamilies. Relative sizes of the neocortex (RSNs) in a given group were assessed as the difference between actual neocortical volume and the volume expected from an allometric relationship between neocortical volume and the volume of the rest of the brain. We found that RSNs are related to diet and social structure: frugivorous anthropoids had higher values of RSNs than folivorous anthropoids, and polygynous anthropoids had significantly higher values of RSNs than monogynous anthropoids. Furthermore, RSNs were positively correlated with the size of the troop. These results suggest that development of the neocortex is associated with both diet and social structure in anthropoids.  相似文献   

15.
The relationship between body size and feeding ecology is well established for primates. It is argued that the evolutionary history of modern New World monkeys and, in particular, the path to attainment of current body size is significant in understanding the similarities and differences between dietary strategies and other ecological parameters of similar-sized monkeys. Current interpretations of New World monkey evolutionary relationships are reviewed. Based on a synthesis of available body weights and the assumption that the earliest New World monkeys weighed close to 1 kg, similar to modern Aotus and Callicebus, predicted patterns of body size change in each lineage are given. Restrictions on directions of body size change in primates are discussed, and it is shown that "Stanley's Rule" offers a good explanation for differing body size ranges in New and Old World anthropoids. Predicted ecological correlates to body size drawn from the mammalian literature are offered and tested using data on New World monkeys, which show some concurrence and several interesting departures from predicted patterns. Sexual dimorphism in body weight of New World monkey species is reviewed, based on the new summary of body weight data given.  相似文献   

16.
By analyzing a homogenous dataset we show, in contradiction to a previous study, that the scaling of body frontal area (S(b)) with body mass (m(b)) does not differ between passerine and nonpasserine birds. It is likely that comparison of data collected from live passerines with data collected from frozen nonpasserines had led to the incorrect conclusion that the scaling of S(b) varied between the taxa. We suggest that body dimensions collected from frozen specimens, or specimens stored in alcohol, are not applicable to live birds, and that both the current equations presented in the literature for predicting S(b) from m(b) may lead to inaccurate estimates. Using data from preserved specimens, we found that S(b) scales isometrically with m(b) (S(b) proportional, variant m(b) (0.66)), and therefore we found no evidence for larger birds being more streamlined than smaller birds. S(b) scales with negative allometry against wingspan (b), however, and b scales with positive allometry against m(b), so larger birds have smaller S(b) relative to b. In addition, it appears that dorsoventral flattening of the body is a general characteristic of bird's bodies but that it is more pronounced in larger birds, suggesting perhaps a function in terms of increased lift during forward flight. It appears that bird's bodies obey the surface-to-area geometric scaling law, but bird body shape may vary in relation to aerodynamic function. We suggest that a large-scale study, simultaneously measuring S(b) and m(b) in live passerines and nonpasserines, is required to improve the predictive power of S(b) upon m(b) scaling equations, which play a key role in the estimation of mechanical power consumption in flight in birds. Furthermore, the relations between bird body shape and axial skeleton dimensions, with reference to aerodynamic adaptation, warrant further investigation.  相似文献   

17.
Adult stature and body mass represent fundamental biological characteristics of individuals and populations, as they are relevant to a range of problems from assessing nutrition and health to longer term evolutionary processes. Stature and body mass estimation from skeletal dimensions are therefore key to addressing biological and social questions about past populations. Anatomical reconstruction provides the most direct proxy for living stature but is only suitable for well-preserved remains. Regression equations for estimating stature from bone lengths are therefore extremely useful, though it is well recognized that differences in body proportions limit the cross-application of equations between samples. Here, we assess the accuracy of published stature estimation equations from worldwide and New World groups applied to archaeological samples from the central Andean coast and highlands of South America. As no existing equations are clearly appropriate, new sample-specific regression equations are presented. Anatomical stature reconstruction is further complicated by artificial cranial modification (ACM) influencing cranial height in Andean samples, so this problem is investigated in the current sample. Although ACM has minimal impact here, the possibility should be explored in other samples before anatomical stature estimation is attempted. Recommendations are also made for estimating body mass from femoral head diameter. The mean of three previously published equations is shown to offer minimal bias and the most reliable estimate of body mass in the study samples.  相似文献   

18.
Proximal femoral dimensions were measured from radiographs of 80 living subjects whose current body weight and body weight at initial skeletal maturity (18 years) could be ascertained. Results generally support the hypothesis that articular size does not change in response to changes in mechanical loading (body weight) in adults, while diaphyseal cross-sectional size does. This can be explained by considering the different bone remodeling constraints characteristic of largely trabecular bone regions (articulations) and largely compact cortical bone regions (diaphyses). The femoral neck shows a pattern apparently intermediate between the two, consistent with its structure. When the additional statistical "noise" created by an essentially static femoral head size is accounted for, the present study supports other studies that have demonstrated rather marked positive allometry in femoral articular and shaft cross-sectional dimensions to body mass among adult humans. Body weight prediction equations developed from these data give reasonable results for modern U.S. samples, with average percent prediction errors of about 10%-16% for individual weights and about 2% for sample mean weights using the shaft dimension equations. When predicting body weight from femoral head size in earlier human samples, a downward correction factor of about 10% is suggested to account for the increased adiposity of very recent U.S. adults.  相似文献   

19.
Almost two decades of research on the self-recognition capacity of non-human primates has produced evidence of intriguing phylogenetic differences. Not a single species of monkey has demonstrated the ability to recognize its own reflection in a mirror, despite some claims to the contrary. To date, only humans, orangutans and chimpanzees have passed objective tests of mirror-recognition. This paper reviews the methodology and evidence for self-recognition in primates along with the assumption that this ability is an indicator of self-awareness. The failure of the gorilla to master the task is discussed in some detail, along with an evaluation of anecdotal evidence of self-recognition by at least one gorilla. Also, the evolutionary backdrop of the primates is considered with reference to this unique behavior. Evidence supporting alternate, non-cognitive interpretations of self-recognition is assessed.  相似文献   

20.
Human obesity is a growing epidemic throughout the world. Body mass index (BMI) is commonly used as a good indicator of obesity. Body adiposity index (BAI = hip circumference (cm)/stature (m)1.5 ? 18), as a new surrogate measure, has been proposed recently as an alternative to BMI. This study, for the first time, compares BMI and BAI for predicting percent body fat (PBF; estimated from skinfolds) in a sample of 302 Buryat adults (148 men and 154 women) living in China. The BMI and BAI were strongly correlated with PBF in both men and women. The correlation coefficient between BMI and PBF was higher than that between BAI and PBF for both sexes. For the linear regression analysis, BMI better predicted PBF in both men and women; the variation around the regression lines for each sex was greater for BAI comparisons. For the receiver operating characteristic (ROC) analysis, the area under the ROC curve for BMI was higher than that for BAI for each sex, which suggests that the discriminatory capacity of the BMI is higher than the one of BAI. Taken together, we conclude that BMI is a more reliable indicator of PBF derived from skinfold thickness in adult Buryats. Am J Phys Anthropol 152:294–299, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号