首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[15N]Aspartate and 5-amino-4-imidazolecarboxamide riboside (AICAriboside) were used to evaluate the contribution of the purine nucleotide cycle to ammonia production in renal tubules isolated from control and chronically acidotic rats. Addition of 1 mM AICAriboside to incubation medium containing 2.5 mM [15N] aspartate significantly stimulated production of 15NH3 and 15N in the 6-amino group of adenine nucleotides during a 30-min incubation. In tubules from both control and acidotic animals, the levels of ATP, AMP, and NH3 were increased. In contrast, 5 mM AICAriboside inhibited 15NH3 production and reduced the total purine nucleotide content. In tubules from acidotic rats, enrichment in 15NH3 exceeded that in the 6-amino group of the adenine nucleotides, indicating that no precursor-product relationship existed between the purine nucleotide cycle and ammonia. Conversely, in tubules from control rats, 15N enrichment in the 6-amino group of the adenine nucleotides exceeded that in NH3. This relationship obtained whether or not AICAriboside was included in the incubation mixture. The current investigations show that the metabolism of aspartate through the purine nucleotide cycle is lower in renal tubules obtained from chronically acidotic rats than in control tubules. The observations indicate that AICAriboside has a biphasic effect on renal ammoniagenesis and adenine nucleotide synthesis, and suggest a possible clinical use of AICAriboside in cases of impaired ammonia formation in renal failure.  相似文献   

2.
13C-n.m.r. spectroscopy and g.c.-m.s. were used to determine the metabolic fate of glutamate carbon in rat kidney. The main purpose was to characterize the effect of chronic metabolic acidosis on the utilization of glutamate carbon. Renal tubules obtained from normal and chronically acidotic rats were incubated in Krebs buffer, pH 7.4, in the presence of 2.5 mM-[3-13C]glutamate. During the course of incubation the concentrations of total glucose and NH3 were significantly (P less than 0.05) higher in tissue from acidotic rats. The levels of some tricarboxylic-acid-cycle intermediates were higher (P less than 0.05) in control tissue. In control tissue, 13C-n.m.r. spectra demonstrated a significantly higher rate of 13C appearance of aspartate, glutamine and [2,4-13C]glutamate. However, in acidosis the resonances of [13C]glucose carbon atoms were significantly higher. In the control, approx. 15% of glutamate carbon was accounted for by [13C]glucose formation as against 30% in chronic acidosis. However, in control tissue, 44% of glutamate carbon utilization was accounted for by recycling to glutamate and formation of aspartate, glutamine and GABA. In acidosis, only 11% was so recovered. Analysis of 15NH3 formation during the course of incubation with 2.5 mM-[15N]glutamate demonstrated a positive association between the appearance of [13C]glucose and 15NH3 both in the control and in acidosis. The data suggest that the control of gluconeogenesis and ammoniagenesis in acidosis is, in part, referable to a diminution in the rate of the reductive amination of alpha-oxoglutarate, that of the transamination reaction and that of glutamine synthesis.  相似文献   

3.
The contribution of the purine nucleotide cycle to renal ammoniagenesis was examined in cortical tubule suspensions prepared from acidotic rats and incubated with [alpha-15N]glutamine, [15N]glutamate, or [15N]aspartate. Labeling of ammonia and adenine nucleotides was determined after enzymatic transformations designed to circumvent the technical problem that 15NH3 and H2O have the same nominal mass. Labeling of the adenine nucleotide was undetectable (less than 10%) even after 1 h of incubation. From the measured concentrations of adenine nucleotides and ammonia and the labeling of the ammonia, the flux through the purine nucleotide cycle was calculated to account for less than 1% of the deamination of alpha-amino groups from all three substrates. The glutamate dehydrogenase reaction is therefore the likely pathway for deamination. The rate of 15NH3 production from [alpha-15N]glutamine was two or three times greater than from added [15N]glutamate, indicating a preference for intracellularly generated glutamate. 15NH3 production from added [15N]aspartate was similar to and perhaps slightly greater than that from added [15N]glutamate.  相似文献   

4.
To test the significance of the purine nucleotide cycle in renal ammoniagenesis, studies were conducted with rat kidney cortical slices using glutamate or glutamine labelled in the alpha-amino group with 15N. Glucose production by normal kidney slices with 2 mM-glutamine was equal to that with 3 mM-glutamate. With L-[15N]glutamate as sole substrate, one-third of the total ammonia produced by kidney slices was labelled, indicating significant deamination of glutamate or other amino acids from the cellular pool. Ammonia produced from the amino group of L-[alpha-15N]glutamine was 4-fold higher than from glutamate at similar glucose production rates. Glucose and ammonia formation from glutamine by kidney slices obtained from rats with chronic metabolic acidosis was found to be 70% higher than by normal kidney slices. The contribution of the amino group of glutamine to total ammonia production was similar in both types of kidneys. No 15N was found in the amino group of adenine nucleotides after incubation of kidney slices from normal or chronically acidotic rats with labelled glutamine. Addition of Pi, a strong inhibitor of AMP deaminase, had no effect on ammonia formation from glutamine. Likewise, fructose, which may induce a decrease in endogenous Pi, had no effect on ammonia formation. The data obtained suggest that the contribution of the purine nucleotide cycle to ammonia formation from glutamine in rat renal tissue is insignificant.  相似文献   

5.
Carbon flux through tricarboxylic acid cycle in rat renal tubules   总被引:1,自引:0,他引:1  
Our aim was to delineate the effect(s) of chronic metabolic acidosis on renal TCA-cycle metabolism. Renal tubules isolated from control and chronically acidotic rats were incubated at pH 7.4 with either 2 mM [2,3-13C]pyruvate or [2-13C]acetate. GC-MS and/or 13C-NMR were utilized to monitor the flux of 13C through pyruvate dehydrogenase, pyruvate carboxylase and the TCA-cycle. With either, precursor acidosis was associated with significantly decreased formation of 13C-labelled citrate, malate, aspartate and alanine and increased formation of glucose, lactate and acetyl-CoA as compared with the control. The results indicate that adaptation of renal metabolism to chronic metabolic acidosis is associated with diminished flux through citrate synthetase and concomitantly increased flux through pyruvate carboxylase. The data suggest that depletion of TCA-cycle intermediates and enhanced ammoniagenesis in the kidney of chronically acidotic rats may be regulated at the site of mitochondrial citrate-condensing enzyme.  相似文献   

6.
As part of a study on the regulation of renal ammoniagenesis in the mouse kidney, we investigated the effect of chronic metabolic acidosis on glutamine synthesis by isolated mouse renal proximal tubules. The results obtained reveal that, in tubules from control mice, glutamine synthesis occurred at high rates from glutamate and proline and, to a lesser extent, from ornithine, alanine, and aspartate. A 48 h, metabolic acidosis caused a marked inhibition of glutamine synthesis from near-physiological concentrations of both alanine and proline that were avidly metabolized by the tubules; metabolic acidosis also greatly stimulated glutamine utilization and metabolism. These effects were accompanied by a large increase (i) in alanine, proline, and glutamine gluconeogenesis and (ii) in ammonia accumulation from proline and glutamine. In the renal cortex of acidotic mice, the activity of phosphoenolpyruvate carboxykinase increased 4-fold, but that of glutamate dehydrogenase did not change; in contrast with what is known in the rat renal cortex, metabolic acidosis markedly diminished the glutamine synthetase activity and protein level, but not the glutamine synthetase mRNA level in the mouse renal cortex. These results strongly suggest that, in the mouse kidney, glutamine synthetase is an important regulatory component of the availability of the ammonium ions to be excreted for defending systemic acid-base balance. Furthermore, they show that, in rodents, the regulation of renal glutamine synthetase is species-specific.  相似文献   

7.
We have studied the relative roles of the glutaminase versus glutamate dehydrogenase (GLDH) and purine nucleotide cycle (PNC) pathways in furnishing ammonia for urea synthesis. Isolated rat hepatocytes were incubated at pH 7.4 and 37 degrees C in Krebs buffer supplemented with 0.1 mM L-ornithine and 1 mM [2-15N]glutamine, [5-15N]glutamine, [15N]aspartate, or [15N]glutamate as the sole labeled nitrogen source in the presence and absence of 1 mM amino-oxyacetate (AOA). A separate series of incubations was carried out in a medium containing either 15N-labeled precursor together with an additional 19 unlabeled amino acids at concentrations similar to those of rat plasma. GC-MS was utilized to determine the precursor product relationship and the flux of 15N-labeled substrate toward 15NH3, the 6-amino group of adenine nucleotides ([6-15NH2]adenine), 15N-amino acids, and [15N]urea. Following 40 min incubation with [15N]aspartate the isotopic enrichment of singly and doubly labeled urea was 70 and 20 atom % excess, respectively; with [15N]glutamate these values were approximately 65 and approximately 30 atom % excess for singly and doubly labeled urea, respectively. In experiments with [15N]aspartate as a sole substrate 15NH3 enrichment exceeded that in [6-NH2]adenine, indicating that [6-15NH2]adenine could not be a major precursor to 15NH3. Addition of AOA inhibited the formation of [15N]glutamate, 15NH3 and doubly labeled urea from [15N]aspartate. However, AOA had little effect on [6-15NH2]adenine production. In experiments with [15N]glutamate, AOA inhibited the formation of [15N]aspartate and doubly labeled urea, whereas 15NH3 formation was increased. In the presence of a physiologic amino acid mixture, [15N]glutamate contributed less than 5% to urea-N. In contrast, the amide and the amino nitrogen of glutamine contributed approximately 65% of total urea-N regardless of the incubation medium. The current data indicate that when glutamate is a sole substrate the flux through GLDH is more prominent in furnishing NH3 for urea synthesis than the flux through the PNC. However, in experiments with medium containing a mixture of amino acids utilized by the rat liver in vivo, the fraction of NH3 derived via GLDH or PNC was negligible compared with the amount of ammonia derived via the glutaminase pathway. Therefore, the current data suggest that ammonia derived from 5-N of glutamine via glutaminase is the major source of nitrogen for hepatic urea-genesis.  相似文献   

8.
H G Preuss  D M Roxe  E Bourke 《Life sciences》1987,41(14):1695-1702
We believe that two findings are interconnected and help to comprehend a major mechanism behind the regulation of renal ammonia production during acidosis. First, slices from acidotic compared to control and alkalotic rats produce more ammonia from glutamine. Second, inhibition of renal oxidative metabolism at various points by metabolic inhibitors augments slice ammoniagenesis. Based on this, our purpose was to determine whether enhanced renal ammoniagenesis during acidosis could occur through the same mechanism as the metabolic inhibitors. However, metabolic inhibitors (malonate; arsenite; 2,4-dinitrophenol) usually decrease while acidosis increases slice gluconeogenesis. There is one known exception. Fluorocitrate, which blocks citrate metabolism, simulates the acidotic condition by enhancing both ammonia and glucose production. Accordingly, a block of oxidative metabolism if located prior to citrate oxidation in the tricarboxylic acid cycle could theoretically augment ammoniagenesis during acidosis. Lactate, is a major renal fuel whose oxidative metabolism would be blocked by fluorocitrate. There, we concentrated on the effects of acidosis on lactate as well as glutamine metabolism. Lactate decarboxylation decreases in the face of increased glucose production during acidosis, and lactate inhibition of glutamine decarboxylation decreases in slices from acidotic rats. Also, we found lesser oxygen consumption in the presence of lactate by kidney slices from acidotic rats compared to control and alkalotic rats. We postulate that relatively less incorporation of lactate into the TCA cycle, causing decreased citrate formation and citrate oxidation during acidosis, contributes, at least in part, to acidotic adaptation of ammoniagenesis.  相似文献   

9.
1. The oxidation of glutamine by kidney-cortex mitochondria from normal and acidotic rats was not inhibited by avenaciolide, which did inhibit glutamate uptake and oxidation. The oxidation of glutamine by these mitochondria was always greater than that of glutamate. Direct measurements of the metabolism of [1-14C]glutamine in the presence of glutamate, and of [1-14C]glutamate in the presence of glutamine, demonstrated that the uptake and metabolism of external glutamate is insufficient to account for the observed rate of glutamine uptake and metabolism. Thus the postulated glutamine/glutamate antiport does not play a quantitatively important role in the metabolism of glutamine by renal mitochondria. 2. Rapid swelling of these mitochondria was observed in iso-osmotic solutions of L-glutamine and L-glutamyl-gamma-monohydroxamate but not in D-glutamine or L-isoglutamine (1-amido-2-aminoglutaric acid). Thus a relatively specific glutamine uniport exists in these mitochondria. 3. The utilization of glutamine was increased about 3-fold in mitochondria from chronically acidotic rats. Thus mitochondrial adaptations play an important part in the renal response to metabolic acidosis.  相似文献   

10.
Glycine is metabolized in isolated renal cortical tubules to stochiometric qualities of ammonia, CO2 and serine by the combined actions of the glycine-cleavage-enzyme complex and serine hydroxymethyltransferase. The rate of renal glycine metabolism by this route is increased in tubules from acidotic rats, but is not affected in vitro by decreasing the incubation pH from 7.4 to 7.1. Metabolic acidosis caused an increase in the renal activity of the glycine-cleavage-enzyme complex, but there were no changes in the activity of serine hydroxymethyltransferase or of methylenetetrahydrofolate dehydrogenase. This enzymic adaptation permits increased ammoniagenesis from glycine during acidosis. The physiological implications are discussed.  相似文献   

11.
In the dog kidney in vivo, malonate augmented ammoniagenesis from both amide and nonamide nitrogen sources, similar to previous in vitro investigations using incubating canine renal tubules. This was highly significant in alkalotic dogs, where it was accompanied by decreased renal tissue concentrations of glutamate. Changes in renal ammonia metabolism were less evident in acidotic dogs where a markedly decreased glomerular filtration rate was noted following malonate administration. Under conditions of complete ureteric obstruction which effectively abolished glomerular filtration, malonate significantly augmented ammoniagenesis above baseline in acidotic dogs. These in vivo results with malonate have similarities to those seen in dogs subjected to an acid challenge alone and suggest that the adaptation in renal ammoniagenesis under both circumstances occurs via enhanced deamination of glutamate pools.  相似文献   

12.
Cerebral Ammonia Metabolism in Hyperammonemic Rats   总被引:7,自引:7,他引:0  
The short-term metabolic fate of blood-borne [13N]ammonia was determined in the brains of chronically (8- or 14-week portacaval-shunted rats) or acutely (urease-treated) hyperammonemic rats. Using a "freeze-blowing" technique it was shown that the overwhelming route for metabolism of blood-borne [13N]ammonia in normal, chronically hyperammonemic and acutely hyperammonemic rat brain was incorporation into glutamine (amide). However, the rate of turnover of [13N]ammonia to L-[amide-13N]glutamine was slower in the hyperammonemic rat brain than in the normal rat brain. The activities of several enzymes involved in cerebral ammonia and glutamate metabolism were also measured in the brains of 14-week portacaval-shunted rats. The rat brain appears to have little capacity to adapt to chronic hyperammonemia because there were no differences in activity compared with those of weight-matched controls for the following brain enzymes involved in glutamate/ammonia metabolism: glutamine synthetase, glutamate dehydrogenase, aspartate aminotransferase, glutamine transaminase, glutaminase, and glutamate decarboxylase. The present findings are discussed in the context of the known deleterious effects on the CNS of high ammonia levels in a variety of diseases.  相似文献   

13.
Utilization of [15N]glutamate by cultured astrocytes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The metabolism of 0.25 mM-[15N]glutamic acid in cultured astrocytes was studied with gas chromatography-mass spectrometry. Almost all 15N was found as [2-15N]glutamine, [2-15N]glutamine, [5-15N]glutamine and [15N]alanine after 210 min of incubation. Some incorporation of 15N into aspartate and the 6-amino position of the adenine nucleotides also was observed, the latter reflecting activity of the purine nucleotide cycle. After the addition of [15N]glutamate the ammonia concentration in the medium declined, but the intracellular ATP concentration was unchanged despite concomitant ATP consumption in the glutamine synthetase reaction. Some potential sources of glutamate nitrogen were identified by incubating the astrocytes for 24 h with [5-15N]glutamine, [2-15N]glutamine or [15N]alanine. Significant labelling of glutamate was noted with addition of glutamine labelled on either the amino or the amide moiety, reflecting both glutaminase activity and reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. Alanine nitrogen also is an important source of glutamate nitrogen in this system.  相似文献   

14.
1. The pathways and the fate of glutamate carbon and nitrogen were investigated in isolated guinea-pig kidney-cortex tubules. 2. At low glutamate concentration (1 mM), the glutamate carbon skeleton was either completely oxidized or converted into glutamine. At high glutamate concentration (5 mM), glucose, lactate and alanine were additional products of glutamate metabolism. 3. At neither concentration of glutamate was there accumulation of ammonia. 4. Nitrogen-balance calculations and the release of 14CO2 from L-[1-14C]glutamate (which gives an estimation of the flux of glutamate carbon skeleton through alpha-oxoglutarate dehydrogenase) clearly indicated that, despite the absence of ammonia accumulation, glutamate metabolism was initiated by the action of glutamate dehydrogenase and not by transamination reactions as suggested by Klahr, Schoolwerth & Bourgoignie [(1972) Am. J. Physiol. 222, 813-820] and Preuss [(1972) Am. J. Physiol. 222, 1395-1397]. Additional evidence for this was obtained by the use of (i) amino-oxyacetate, an inhibitor of transaminases, which did not decrease glutamate removal, or (ii) L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which caused an accumulation of ammonia from glutamate. 5. Addition of NH4Cl plus glutamate caused an increase in both glutamate removal and glutamine synthesis, demonstrating that the supply of ammonia via glutamate dehydrogenase is the rate-limiting step in glutamine formation from glutamate. NH4Cl also inhibited the flux of glutamate through glutamate dehydrogenase and the formation of glucose, alanine and lactate. 6. The activities of enzymes possibly involved in the glutamate conversion into pyruvate were measured in guinea-pig renal cortex. 7. Renal arteriovenous-difference measurements revealed that in vivo the guinea-pig kidney adds glutamine and alanine to the circulating blood.  相似文献   

15.
Ammonia assimilation in Bacillus polymyxa. 15N NMR and enzymatic studies   总被引:4,自引:0,他引:4  
Pathways of ammonia assimilation into glutamic acid and alanine in Bacillus polymyxa were investigated by 15N NMR spectroscopy in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthetase, alanine dehydrogenase, and glutamic-alanine transaminase. Ammonia was found to be assimilated into glutamic acid predominantly by NADPH-dependent glutamate dehydrogenase with a Km of 2.9 mM for NH4+ not only in ammonia-grown cells but also in nitrate-grown and nitrogen-fixing cells in which the intracellular NH4+ concentrations were 11.2, 1.04, and 1.5 mM, respectively. In ammonia-grown cells, the specific activity of alanine dehydrogenase was higher than that of glutamic-alanine transaminase, but the glutamate dehydrogenase/glutamic-alanine transaminase pathway was found to be the major pathway of 15NH4+ assimilation into [15N]alanine. The in vitro specific activities of glutamate dehydrogenase and glutamine synthetase, which represent the rates of synthesis of glutamic acid and glutamine, respectively, in the presence of enzyme-saturating concentrations of substrates and coenzymes are compared with the in vivo rates of biosynthesis of [15N]glutamic acid and [alpha,gamma-15N]glutamine observed by NMR, and implications of the results for factors limiting the rates of their biosynthesis in ammonia- and nitrate-grown cells are discussed.  相似文献   

16.
1. Activation by H+ and by Ca2+ of 2-oxoglutarate dehydrogenase extracted from mitochondria of normal or acidotic rat kidney is described. This effect, first shown for the enzyme from heart by McCormack & Denton [Biochem. J. (1979) 180, 533--544], is of a regulatory importance in kidney, in which organ, in contrast with heart, increased flux occurs during acute acidosis. 2. In renal-cortical tubules, 2-oxoglutarate concentration fell within 1 min of decreasing the pH and rose again 1--3 min after increasing the pH of the medium. The extent of the decrease in 2-oxoglutarate was directly related to the decrease in pH. A similar fall in the oxoglutarate concentration in the whole perfused kidney was noted within 5 min of inducing acidosis. 3. In tubules, the rates of gluconeogenesis and ammoniagenesis from 1 mM-glutamine were increased by 64 and 33% respectively on decreasing pH to 7.0, the increase in rates being proportional to the fall in pH between 7.4 and 7.0. 4. The increased rates of renal ammoniagenesis and gluconeogenesis seen in acute acidosis in vitro can be accounted for by the increased activity of 2-oxoglutarate dehydrogenase and the tissue concentrations of 2-oxoglutarate when calculated from the Km determined at normal and acidotic pH. 5. The decrease in 2-oxoglutarate concentration seen in acute acidosis implies a fall in intramitochondrial pH in kidney, and is the result of two phenomena, accelerated disposal via 2-oxoglutarate dehydrogenase and maintenance of near equilibrium of glutamate dehydrogenase.  相似文献   

17.
Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.  相似文献   

18.
The activities of various ammoniagenic, gluconeogenic, and glycolytic enzymes were measured in the renal cortex and also in the liver of rats made diabetic with streptozotocin. Five groups of animals were studied: normal, normoglycemic diabetic (insulin therapy), hyperglycemic, ketoacidotic, and ammonium chloride treated rats. Glutaminase I, glutamate dehydrogenase, glutamine synthetase, phosphoenolpyruvate carboxykinase (PEPCK), hexokinase, phosphofructokinase, fructose-1,6-diphosphatase, malate dehydrogenase, malic enzyme, and lactate dehydrogenase were measured. Renal glutaminase I activity rose during ketoacidosis and ammonium chloride acidosis. Glutamate dehydrogenase in the kidney rose only in ammonium chloride treated animals. Glutamine synthetase showed no particular variation. PEPCK rose in diabetic hyperglycemic animals and more so during ketoacidosis and ammonium chloride acidosis. It also rose in the liver of the diabetic animals. Hexokinase activity in the kidney rose in diabetic insulin-treated normoglycemic rats and also during ketoacidosis. The same pattern was observed in the liver of these diabetic rats. Renal and hepatic phosphofructokinase activities were elevated in all groups of experimental animals. Fructose-1,6-diphosphatase and malate dehydrogenase did not vary significantly in the kidney and the liver. Malic enzyme was lower in the kidney and liver of the hyperglycemic diabetic animals and also in the liver of the ketoacidotic rats. Lactate dehydrogenase fell slightly in the liver of diabetic hyperglycemic and NH4Cl acidotic animals. The present study indicates that glutaminase I is associated with the first step of increased renal ammoniagenesis during ketoacidosis. PEPCK activity is influenced both by hyperglycemia and ketoacidosis, acidosis playing an additional role. Insulin appears to prevent renal gluconeogenesis and to favour glycolysis. The latter would seem to remain operative in hyperglycemic and ketoacidotic diabetic animals.  相似文献   

19.
We studied the effects of sodium valproate, a widely used antiepileptic drug and a hyperammonemic agent, on L-[1-14C]glutamine and L-[1-14C]glutamate metabolism in isolated human kidney-cortex tubules. Valproate markedly stimulated glutamine removal as well as the formation of ammonia, 14CO2, pyruvate, lactate and alanine, but it inhibited glucose synthesis; the increase in ammonia formation was explained by a stimulation by valproate mainly of flux through glutaminase (EC 3.5.1.2) and to a much lesser extent of flux through glutamate dehydrogenase (EC 1.4.1.3). By contrast, valproate did not stimulate glutamate removal or ammonia formation, suggesting that the increase in flux through glutamate dehydrogenase observed with glutamine as substrate was secondary to the increase in flux through glutaminase. Accumulation of pyruvate, alanine and lactate in the presence of valproate was less from glutamate than from glutamine. Inhibition by aminooxyacetate of accumulation of alanine from glutamine caused by valproate did not prevent the acceleration of glutamine utilization and the subsequent stimulation of ammonia formation. It is concluded from these data, which are the first concerning the in vitro metabolism of glutamine and glutamate in human kidney-cortex tubules, that the stimulatory effect of valproate is primarily exerted at the level of glutaminase in human renal cortex.  相似文献   

20.
The contribution of D-glutamyltransferase (D-GT) (EC 2.3.2.1) to total renal ammonia production was determined by employing DL-methionine-DL-sulfoximine (MSO) as an inhibitor of D-GT. Rat kidney homogenates were assayed for NH3-liberating activity under optimal D-GT or gamma-glutamyltranspeptidase (gamma-GTP) (EC 2.3.2.2) conditions. MSO inhibits only D-GT activity. The contribution of D-GT to total renal ammonia production was then evaluated in the isolated perfused rat kidney employing identical substrate (5 mM L-glutamine) and inhibitor (15 mM MSO) concentrations as employed in the homogenate study. Under these conditions, MSO inhibits 70 percent of the total ammonia production by the normal kidney; in addition, the ratio of ammonia produced per glutamine taken up rose from 1.0 to 1.8. In kidneys from chronically acidotic rats, MSO reduced total ammonia production only 35 percent while the NH3/glutamine ratio rose from 1.0 to 1.8. D-GT appears to be the predominant source of NH3 production in the normal rat kidney; gamma-GTP does not contribute significantly. The rise in the NH3/glutamine ratio after D-GT inhibition is consistent with glutamine utilization via the activated mitochondrial glutaminase (EC 3.5.1.2)-glutamate dehydrogenase (EC 1.4.1.2) pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号