首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Urano  J Kahn 《Radiation research》1983,96(3):549-559
The effect of hyperthermia on the size of hypoxic and chronically hypoxic cell fractions in murine tumors was studied. The chronically hypoxic cell fraction was defined as a fraction of tumor cells which were not oxygenated under hyperbaric oxygen. Animals were C3Hf/Sed mice derived from our defined flora mouse colony. Tumors were FSa-II and MCa which were early generation isotransplants of a spontaneous fibrosarcoma and a mammary carcinoma, respectively. TCD50 (50% tumor control dose) or the radiation dose which yields a local tumor control in half the treated animals and TG (tumor growth) time or the time required for half the treated tumors to reach 1000 mm3 from the first treatment day were experimental end points. Hyperthermia was given by immersing animal feet into a water bath maintained at 43.5 +/- 0.1 degrees C. Animal tumors were irradiated with a 137Cs unit under hypoxic conditions, in air or under O2 30 psi. The hypoxic cell fraction increased immediately after hyperthermia in both MCa and FSa-II tumors. The chronically hypoxic cell fraction was, on the other hand, decreased following hyperthermia. The decrease was more substantial in the MCa than in FSa-II.  相似文献   

2.
Recently, a system that measures tissue oxygen tension using time-resolved luminescence-based optical sensors has become available commercially (Oxford Optronix, Oxford, England). Two experiments were conducted using this system. First, the oxygen tension distribution was measured in two tumor lines: a spontaneous mouse fibrosarcoma, FSa-II, and a human squamous cell carcinoma xenograft, FaDu. The area in which the pO(2) was equal to or lower than 2.5 mmHg was defined as the hypoxic lesion, and the hypoxic cell fraction was taken as the fraction of these measurements in a tumor. The measured hypoxic cell fractions were compared with those determined by the paired cell survival assay for tumors of various sizes. Second, the tumor tissue pO(2) was measured continuously after administration of two different anesthetics to evaluate the effect of these drugs on tissue pO(2). Results indicated a good agreement between the hypoxic cell fractions measured by this system and those determined by the paired cell survival curve assay for tumors smaller than approximately 500 mm(3). For tumors larger than approximately 500 mm(3), the hypoxic cell fractions measured by the oxygen probe system were higher than those measured by the paired cell survival assay. This may suggest that the hypoxic cell fraction measured by the oxygen probes included both hypoxic and necrotic areas in large tumors where necrotic lesions occupied a significant portion of the tumor. Continuous measurements of pO(2) after anesthesia (Nembutal, or ketamine plus xylazine) showed a consistent rise in the pO(2) during the first 20-30 min of measurement. Subsequently, the pO(2) values became constant or continued to rise slowly. For comparison, the tumor cell survivals were assayed after a dose of 20 Gy given in air at 5, 20 and 60 min after anesthesia. The result showed a decrease in cell survival only in tumors irradiated 20 min after an injection of Nembutal.  相似文献   

3.
Proliferation and hypoxia affect the efficacy of radiotherapy, but radiation by itself also affects the tumor microenvironment. The purpose of this study was to analyze temporal and spatial changes in hypoxia, proliferation and apoptosis after irradiation (20 Gy) in cells of a murine adenocarcinoma tumor line (C38). The hypoxia marker pimonidazole was injected 1 h before irradiation to label cells that were hypoxic at the time of irradiation. The second hypoxia marker, CCI-103F, and the proliferation marker BrdUrd were given at 4, 8 and 28 h after irradiation. Apoptosis was detected by means of activated caspase 3 staining. After immunohistochemical staining, the tumor sections were scanned and analyzed with a semiautomatic image analysis system. The hypoxic fraction decreased from 22% in unirradiated tumors to 8% at both 8 h and 28 h after treatment (P < 0.01). Radiation did not significantly affect the fraction of perfused vessels, which was 95% in unirradiated tumors and 90% after treatment. At 8 h after irradiation, minimum values for the BrdUrd labeling index (LI) and maximum levels of apoptosis were detected. At 28 h after treatment, the BrdUrd labeling and density of apoptotic cells had returned to pretreatment levels. At this time, the cell density had decreased to 55% of the initial value and a proportion of the cells that were hypoxic at the time of irradiation (pimonidazole-stained) were proliferating (BrdUrd-labeled). These data indicate an increase in tumor oxygenation after irradiation. In addition, a decreased tumor cell density without a significant change in tumor blood perfusion (Hoechst labeling) was observed. Therefore, it is likely that in this tumor model the decrease in tumor cell hypoxia was caused by reduced oxygen consumption.  相似文献   

4.
There is now abundant evidence that oxygenation in rodent, canine and human tumors is improved during and for up to 1-2 days after heating at mild temperatures. An increase in tumor blood perfusion along with a decline in the oxygen consumption rate appears to account for the improvement of tumor oxygenation by mild hyperthermia. The magnitude of the increase in tumor pO(2), determined with oxygen-sensitive microelectrodes, caused by mild hyperthermia is less than that caused by carbogen breathing. However, mild hyperthermia is far more effective than carbogen breathing in increasing the radiation response of experimental tumors, probably because mild hyperthermia oxygenates both (diffusion-limited) chronically hypoxic and (perfusion-limited) acutely hypoxic cells, whereas carbogen breathing oxygenates only the chronically hypoxic cells. Mild hyperthermia is also more effective than nicotinamide, which is known to oxygenate acutely hypoxic cells, in enhancing the radiation response of experimental tumors. The combination of mild hyperthermia with carbogen or nicotinamide is highly effective in reducing the hypoxic cell fraction in tumors and increasing the radiation response of experimental tumors. A primary rationale for the use of hyperthermia in combination with radiotherapy has been that hyperthermia is equally cytotoxic toward fully oxygenated and hypoxic cells and that it directly sensitizes both fully oxygenated and hypoxic cells to radiation. Such cytotoxicity and such a radiosensitizing effect may be expected to be significant when the tumor temperature is elevated to at least 42-43 degrees C. Unfortunately, it is often impossible to uniformly raise the temperature of human tumors to this level using the hyperthermia devices currently available. However, it is relatively easy to raise the temperature of human tumors into the range of 39-42 degrees C, which is a temperature that can improve tumor oxygenation for up to 1-2 days. The potential usefulness of mild hyperthermia to enhance the response of human tumors to radiotherapy by improving tumor oxygenation merits continued investigation.  相似文献   

5.
S Masunaga  K Ono  M Abe 《Radiation research》1991,125(3):243-247
C3H/He mice bearing the SCC VII tumor were irradiated after being given 10 injections of 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating cells in the tumors, and the tumors were then excised and trypsinized. The tumor cell suspensions were incubated with cytochalasin-B (which blocks cytokinesis), and the micronucleus frequency in unlabeled cells was determined using immunofluorescence staining to BrdU. The micronucleus frequency was then used to calculate the surviving fraction of the unlabeled cells, using the regression line relating the micronucleus frequency to the surviving fraction determined separately for the total tumor cell population. Using this technique, a cell survival curve could be determined for the unlabeled cells, which were regarded as the quiescent cells. Assays performed both immediately after and 24 h after irradiation of normally-aerated tumors showed that unlabeled cells were more radioresistant and had a greater capacity for repair of potentially lethal damage than the tumor cell population as a whole. Moreover, when the assay was performed immediately after the irradiation of both normally-aerated and hypoxic tumors, it was found that unlabeled cells had a much higher hypoxic fraction than the tumor cell population as a whole. This appears to be a useful method for determining the responses of quiescent cells in solid tumors to various treatments.  相似文献   

6.
Preparative surgery immobilized 15 mm of functional jejunum against the peritoneal surface of the ventral abdominal wall in C3H/HeJ mice. The surgery allowed subsequent treatments with single fractions of 44 degrees C hyperthermia and X irradiation to be selective to this portion of small intestine. With each doubling of time since treatment, 1 through 70 weeks, a sample of mice was killed and specimens of their intestines were excised and radially stretched in a tensile-testing apparatus that measured tension as a continuous function of circumference. Preconditioning with repeated cycles of stretch and relaxation before specimens were irreversibly stretched enabled measurement of the limit collagen placed on the extensibility of the intestinal wall by physiologic forces and the stiffness of the intestinal collagen once that limit was exceeded. Both kinds of measurements made possible dose-response characterization of radiation fibrosis for treatments that killed no mice. Response increased linearly with X-ray dose above a threshold. After X rays alone the threshold remained constant at 9.7 +/- 0.6 Gy for the assays at 1 through 8 weeks and subsequently decreased to about 6 Gy by 35 weeks. With adjuvant hyperthermia of 15 min at 44 degrees C beginning 10 min after X irradiation, the threshold of approximately 5 Gy at 2-4 weeks decreased to about 2 Gy by 17 weeks; the thermal enhancement ratio as calculated from slope-ratio analysis of the dose-response curves was 1.50 +/- 0.08 at 2-4 weeks post-treatment and 1.96 +/- 0.05 at 17-70 weeks post-treatment. Up to 20 min at 44 degrees C by itself was without effect. From comparisons of these data with results of crypt microcolony assays, it was concluded that intestinal fibrosis was both a chronic sequela of acute mucosal injury and a late effect of X irradiation. Adjuvant hyperthermia both hastened the expression of the late effect and increased its severity beyond that predicted from the acute injury.  相似文献   

7.
The variation in hypoxic fraction as a function of time after various priming doses of radiation has been investigated in a C3H mouse mammary carcinoma in situ. The hypoxic fraction was calculated from data for local tumor control. Untreated tumors were found to contain 4.8% radiobiologically hypoxic cells. Within minutes after a priming dose of 20 Gy given in air, the hypoxic fraction increased to a value not significantly different from 100%. After 4 h, reoxygenation was complete (hypoxic fraction 1.3%), and the hypoxic fraction stabilized at a level significantly below the untreated value. Following a priming dose of 40 Gy the reoxygenation pattern was different: The hypoxic fraction stayed above the pretreatment value for 4 h, and pronounced reoxygenation occurred after 12 h (hypoxic fraction 0.4%). At longer time intervals the hypoxic fraction again increased to--and slightly above--the oxygenation level of untreated tumors. The present findings show that reoxygenation in solid tumors is a function of radiation dose, and the data suggest that mechanisms other than a decrease in tumor cell O2 consumption are involved in tumor reoxygenation.  相似文献   

8.
Our previous studies have shown that oxygen inhalation significantly reduces tumor hypoxia in the moderately well-differentiated HI subline of the Dunning prostate R3327 rat carcinoma. To test our hypothesis that modifying hypoxia could improve the radiosensitivity of these tumors, we performed experimental radiotherapy to compare the tumor response to ionizing radiation alone or in combination with oxygen inhalation. Tumor pO(2) measurements were performed on size-selected tumors several hours before radiotherapy using (19)F nuclear magnetic resonance echo planar imaging relaxometry (FREDOM) of the reporter molecule hexafluorobenzene. In common with our previous findings, the larger tumors (>3.5 cm(3)) exhibited greater hypoxia than the smaller tumors (<2 cm(3); P < 0.001), and oxygen inhalation reduced the hypoxic fraction (<10 Torr): In the larger tumors, hypoxic fraction dropped significantly from a mean baseline value of 80% to 17% (P < 0.001). The effect of oxygen administered 30 min before and during irradiation on tumor response to a single 30-Gy dose of photons was evaluated by growth delay. For the smaller tumors, no difference in growth delay was found when treatment was given with or without oxygen breathing. By contrast, breathing oxygen before and during irradiation significantly enhanced the growth delay in the larger tumors (additional 51 days). The differential behavior may be attributed to the low baseline hypoxic fraction (<10 Torr) in small tumors (20%) as a target for oxygen inhalation. There was a strong correlation between the estimated initial pO(2) value and the radiation-induced tumor growth delay (R > 0.8). Our histological studies showed a good match between the perfused vessels marked by Hoechst 33342 dye and the total vessels immunostained by anti-CD31 and indicated extensive perfusion in this tumor line. In summary, the present results suggest that the ability to detect modulation of tumor pO(2), in particular, the residual hypoxic fraction, with respect to an intervention, could have prognostic value for predicting the efficacy of radiotherapy.  相似文献   

9.
The effect of cis-diamminedichloroplatinum (II) (c-DDP) on the shape of the radiation dose-response curve for mouse duodenal crypt cells was investigated. A priming X-ray dose was followed 18 h later by graded test doses (single doses or five equal fractions at 3-h intervals) with or without c-DDP. Curves were fitted by a linear quadratic (LQ) relationship. The drug modified the dose-response curve by enhancing both the alpha and the beta terms. Repair kinetics were analyzed in split-dose experiments. c-DDP caused a minor, nonsignificant decrease in the rate of repair after irradiation. The survival ratio after split-dose irradiation, when the same X-ray doses were given, was actually slightly increased by the drug. This paradoxical effect can be explained by the fact that c-DDP mainly increased the beta term in the LQ relationship. There was no significant increase in crypt cell survival when split-drug doses were given alone at increasing intervals, suggesting no cellular repair after c-DDP treatment. The data are discussed in the light of the recently proposed "lethal and potentially lethal" (LPL) unified repair model of Curtis.  相似文献   

10.
The effect of perfluorochemicals in combination with carbogen breathing on the response of SCK tumors of mice to fractionated irradiation was investigated. The SCK tumors of A/J mice were irradiated twice a day at 3 Gy per fraction (6 Gy per day), with a total dose of 18 Gy over 3 days. When the host animals were treated with an intravenous (iv) injection of 12 ml/kg of Fluosol-DA 20% before the first daily tumor irradiation and carbogen breathing during every X irradiation with Fluosol-DA 20% injection without carbogen breathing. The hypoxic cell fraction, as determined by an in vivo-in vitro cloning assay, decreased significantly, and the intratumor pO2, as determined with microelectrodes, was markedly increased by Fluosol-DA 20% injection and carbogen breathing. It was concluded that oxygenation of hypoxic cells in SCK tumors during the course of fractionated irradiation was improved by the iv injection of Fluosol-DA 20% and carbogen breathing.  相似文献   

11.
The energy status, radiobiological hypoxic cell fraction, and hyperthermic sensitivity of a spontaneous murine fibrosarcoma, FSa-II, have been evaluated as a function of tumor size. Tumors were evaluated over the size range of 70 to 800 mm3. The concentration of the high-energy phosphate reservoir creatine phosphate progressively decreased by a factor of 5 with increasing tumor volume, and was matched by an increase in creatine. The concentration of ATP also decreased with increasing tumor size, although this decrease was substantially less pronounced. The sum of ATP, ADP, and AMP did not vary with tumor size, suggesting that the necrotic fraction remained constant. The decrease in energy status occurred in parallel with an increase in the size of the hypoxic cell fraction and with increasing thermal sensitivity. The results suggest that energy status may be an important modifier of hyperthermic sensitivity in vivo and reflect tissue oxygen concentration.  相似文献   

12.
Biological effectiveness of a mixed-beam regimen of fast neutrons and photons was studied in an animal tumor system. NFSa , a spontaneous fibrosarcoma in a C3H mouse, was transplanted in the right hind legs of syngeneic male mice and locally irradiated with a single dose or five daily doses. Tumor control experiments showed that five gamma-ray doses increased TCD50 values by 20 Gy and produced a shallower slope on the dose-response curve compared to that after a single fraction. Fractionated neutron doses also increased the TCD50 value by 9 Gy without changing the slope of the dose-response curve. A mixed-beam regimen of N-gamma-gamma-gamma-N resulted in an independent effect on the tumor. Second, tumor cell survival was examined by the lung colony assay. Nembutal anesthesia reduced the tumor oxic cell fraction, resulting in a single component dose-response curve after a single gamma ray. Five fractionated doses of gamma rays increased both D0 and extrapolation number while those of fast neutrons increased only extrapolation number. The D0 and extrapolation number of the mixed-beam regimen were again identical to those values assuming that the mixed-beam effect was independent. RBEs obtained from cell survival were fairly close to those from TCD50 assays except single-dose experiments.  相似文献   

13.
One group of adult C3H×101 hybrid male mice was given 3 injections of 12.5 μCi of [3H]thymidine at 9-h intervals and irradiated 24 h after the last injection with X-ray doses of 100, 300, 500, 600, 1000 R or the first fraction of a split 1000-R dose given as two 500-R exposures 24 h apart. Mice were killed 207 and 414 h after irradiation. A second group of mice was given a single injection of 12.5 μCi of [3H]thymidine 1 h before irradiation with single exposures of 300, 500, 600, 1000 R, or the first fraction of a 1000-R exposure given as two 500-R fractions 24 h apart. Mice were killed 120 and 207 h after irradiation. In both experiments, parallel groups of mice were given X-ray only as a control for the effect of [3H]thymidine. Two sets of slides were prepared for each mouse receiving [3H]thymidine: one set was not autoradiographed and was used for scoring cell survival; the second set was coated with emulsion and used for scoring percentage of labeled cells. The dose-response curves for survival at 120 and 207 h were curvilinear, with no evidence of discontinuity over the 100–1000-R range. After multiple injections of [3H]thymidine and irradiation 24 h later, percentage of labeled cells at 207 h was comparable for controls, 100, 300, and 600 R; significantly lower than controls for 1000 R; and significantly above controls after 500 + 500 R. Thus the surviving stem-cell population was qualitatively the same for that portion of the dose-response curve giving a linear increase in mutation rate but was different for both 1000-R and 500 + 500-R exposures, and the single and fractionated 1000-R exposures differed from each other. This parallelism between survival of labeled cells and mutation frequency in spermatogonial stem cells suggests that a stage in the cell cycle 24–42 h after DNA synthesis is resistant to cell killing but sensitive to mutation induction. The mutation rate after a single 1000-R exposure is low because labeled, mutation-sensitive cells have been selectively killed. Mutation frequency after the 500 + 500-R dose is increased because of synchronization induced by the first dose combined with selective killing of unlabeled cells by the second fraction. Irradiation 1 h after labeling with [3H]-thymidine demonstrated that the S phase of the spermatogonial stem-cell cycle is sensitive to radiation-induced cell killing.  相似文献   

14.
A recent publication by Leith et al. (Cancer Res. 51, 4111-4113, 1991) showed that administration of epidermal growth factor (EGF) (0.25 mg/kg; q.i.d. x 7) to mice bearing xenografted A431 human epidermoid cancers produced increased tumor growth and a reduction of the percentage of hypoxic cells within neoplasms. In contrast, sialoadenectomy, which removes the majority of circulating EGF in the mouse, resulted in slower tumor growth and increased hypoxic percentages. To investigate such homeostatic mechanisms further, we investigated the growth characteristics and hypoxic fractions of xenografted DLD-2 human colon tumors when tumor-bearing mice received partial hepatectomy (about 65%), unilateral nephrectomy, or nonspecific surgical trauma (laparotomy). Surgical procedures were performed when tumor volumes were about 375 mm3, and hypoxic percentages within tumors were measured by clonogenic excision assay procedures 72 h later. We found that partial hepatectomy increased the growth rates of the transplanted DLD-2 cancers by about a factor of 2.4. This increased growth rate was accompanied by an increase in the mitotic index from about 1.5 to 3.0%. Also, hypoxic fractions were decreased from 0.561 in control tumors to 0.235 in tumors from mice receiving partial hepatectomies. Unilateral nephrectomy and nonspecific surgery manipulations did not alter tumor growth rates, mitotic indices, or hypoxic percentages. These results indicate that partial hepatectomy produces significant alterations in tumor physiology. Results are consistent with a growth factor-mediated mechanism.  相似文献   

15.
Treatment of HeLa cells with 0.1 microM Acyclovir [9-(2-hydroxyethoxymethyl)guanine] (ACV) before exposure to 0, 0.25, 0.5, 1, 2 and 3 Gy of gamma-radiation resulted in a dose-dependent decline in the growth kinetics and cell proliferation indices at 20, 30 and 40 h post-irradiation when compared with the PBS+irradiation group. These results were reflected in the cell survival, which declined in a dose-dependent manner and the surviving fraction of cells was significantly lower in ACV+irradiation group than that of PBS+irradiation group. The effect of ACV+1 Gy irradiation was almost similar to PBS+3 Gy irradiation suggesting an enhancement of the radiation effect by ACV pretreatment. The frequency of micronuclei increased in a dose-dependent manner at all the post-irradiation time periods in both PBS+irradiation and ACV+irradiation group and it was significantly elevated in the latter when compared with the former group. The dose-response for both groups was linear. The surviving fraction of HeLa cells declined with the increasing MN frequency and a close linear quadratic correlation between cell survival and micronuclei-induction was observed.  相似文献   

16.
Experiments were performed to study the influence of hypoxic pretreatment on the radiation response of A431 human squamous carcinoma cells. Reaeration for 10 min after chronic hypoxia (greater than 2 h) was found to enhance the radiosensitivity of A431 cells, and the maximal effect was seen for those cells reaerated after 12 h of hypoxia. The radiosensitivity enhancement for reaerated cells after 12 h of hypoxia was maximized by 5 min after the return to aerobic conditions and reached the control level by 12 h of reaeration. This enhanced radiosensitive state was characterized by a reduced shoulder region and increased slope of the radiation dose-response curve for cells in both the exponential and plateau phases of growth. There was a slight increase in the number of G1 and decrease in the number of S and G2 + M cells for both exponential- and plateau-phase cultures following 12 h hypoxic treatment. Although growth inhibition induced by 12 h of hypoxia was seen for cells in the exponential phase, there was no cell number change in the plateau-phase culture after hypoxia. Plating efficiency (PE) of cells in both growth phases was reduced by 30% after hypoxia. Furthermore, in the exponential-phase culture, the extent of reduction in PE after hypoxia was similar among cells in different phases of the cell cycle. Although S-phase cells in exponentially growing cultures were relatively more resistant to radiation than G1 and G2 + M cells, the cell age-response pattern was the same whether the cells had been aerobic or hypoxic before reaeration and irradiation. Furthermore, the enhancement ratio associated with reaeration after 12 h of hypoxia for these three subpopulations of cells was 1.3. Our results indicate that the increase in radiosensitivity due to reaeration after chronic hypoxia is unlikely to be related to the changes of cell cycle stage and growth phase during hypoxic treatment.  相似文献   

17.
In experiments utilizing the alkaline filter elution assay for radiation-induced DNA damage we observed an unexpected dependence of hypoxic dose-response curves on the length of time V79 cells were in exponential growth between subculturing and irradiation. Dose-response curves for DNA from cells irradiated in air were identical regardless of whether the exponential-phase cells had been subcultured 24 or 48 h prior to irradiation, but cells irradiated in hypoxia 24 h after subculture displayed a dose-response curve for DNA damage which was two times steeper than that obtained for cells irradiated in hypoxia 48 h after subculture. Possible mechanisms for this effect are discussed.  相似文献   

18.
Cell culture studies were carried out to determine whether moderate hyperthermia reduces the oxygen enhancement ratio of cells under well-defined cultural conditions. Using asynchronously growing HeLa cells, the OER of cells with and without glucose was determined following exposure of cells to moderate hyperthermia, 40.5 degrees C for 1 hr, immediately after X irradiation. The OER of cells with 5 mM glucose was 3.2, whereas the OER of glucose-deprived cells was reduced to 2.0. The pH of the cell culture medium was kept at 7.4 throughout the experiments. The present finding may provide a clue toward further enhancing the radiosensitization of hypoxic cells by heat.  相似文献   

19.
In experiments on Ehrlich ascites tumor cells it was shown that hypoxia, which reduces the lethal effect of gamma-rays, can considerably enhance the injury of cells by glucose. Treatment of tumor cells with glucose in hypoxic conditions followed by exposure to ionizing radiation under both hypoxia and normal aeration causes a 6-7-fold increase in cell injury as compared to irradiation alone. Moreover, the glucose treatment in hypoxic conditions (without concomitant irradiation) may cause approximately 99% death of tumor cells. The data obtained permit to consider the glucose treatment as an effective means by breaking the tumor radioresistance conditioned by a pool of hypoxic cells.  相似文献   

20.
Thermal ablation in combination with transarterial chemoembolization (TACE) has been reported to exert a more powerful antitumor effect than thermal ablation alone in hepatocellular carcinoma patients. However, the underlying mechanisms remain unclear. The purpose of the present study was to evaluate whether sublethal hyperthermia encountered in the periablation zone during thermal ablation enhances the anticancer activity of doxorubicin in chronically hypoxic (encountered in the tumor area after TACE) liver cancer cells and to explore the underlying mechanisms. In the present study, HepG2 cells precultured under chronic hypoxic conditions (1% oxygen) were treated in a 42°C water bath for 15 or 30 min, followed by incubation with doxorubicin. Assays were then performed to determine intracellular uptake of doxorubicin, cell viability, apoptosis, cell cycle, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and total antioxidant capacity. The results confirmed that sublethal hyperthermia enhanced the intracellular uptake of doxorubicin into hypoxic HepG2 cells. Hyperthermia combined with doxorubicin led to a greater inhibition of cell viability and increased apoptosis in hypoxic HepG2 cells as compared with hyperthermia or doxorubicin alone. In addition, the combination induced apoptosis by increasing ROS and causing disruption of MMP. Pretreatment with the ROS scavenger N-acetyl cysteine significantly inhibited the apoptotic response, suggesting that cell death is ROS-dependent. These findings suggested that sublethal hyperthermia enhances the anticancer activity of doxorubicin in hypoxic HepG2 cells via a ROS-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号