首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase diagrams for DNA crystallization systems   总被引:1,自引:0,他引:1  
Phase diagrams for several oligonucleotide duplex-spermine systems have been constructed. These diagrams characterize the duplex and spermine concentrations ranges in which crystalline precipitates are formed. All of them are wedge-like form. The slope of the upper branch of the diagram is determined by the oligonucleotide length. The position of the lower branch depends on both the nucleotide sequence and its length. The position of the lower branch depends on both the nucleotide sequence and its length. It has been shown that the addition to the system of MgCl2 and NaCl salts and MPD results in specific changes in the diagrams. A model for oligonucleotide duplex-spermine system has been suggested which explains the main characteristic features of the obtained phase diagrams. The experimental phase diagrams for the (pGpT)n (pApC)n-spermine system (n = 2,3,4) have been analyzed ion terms of this model and the values of the binding constants of spermine and Mg2+ ions binding to duplexes have been determined. It permitted to identify the complexes that precipitated in different regions of the phase diagrams under various conditions. The diagram obtained in the presence of a cobalt hexammine counterion is also considered. It has been shown that this phase diagram, in general, is similar to those obtained for the oligonucleotide duplex-spermine system.  相似文献   

2.
The ternary system palmitoylsphingomyelin (PSM)/palmitoyloleoylphosphatidylcholine (POPC)/cholesterol is used to model lipid rafts. The phase behavior of the three binary systems PSM/POPC, PSM/cholesterol, and POPC/cholesterol is first experimentally determined. Phase coexistence boundaries are then determined for ternary mixtures at room temperature (23 degrees C) and the ternary phase diagram at that temperature is obtained. From the diagram at 23 degrees C and the binary phase diagrams, a reasonable expectation is drawn for the ternary phase diagram at 37 degrees C. Several photophysical methodologies are employed that do not involve detergent extraction, in addition to literature data (e.g., differential scanning calorimetry) and thermodynamic rules. For the ternary phase diagrams, some tie-lines are calculated, including the one that contains the PSM/POPC/ cholesterol 1:1:1 mixture, which is often used in model raft studies. The diagrams here described are used to rationalize literature results, some of them apparently discrepant, and to discuss lipid rafts within the framework of liquid-ordered/liquid-disordered phase coexistence.  相似文献   

3.
Lam PM  Levy JC  Huang H 《Biopolymers》2004,73(3):293-300
A double stranded DNA molecule when pulled with a force acting on one end of the molecule can become either partially or completely unzipped depending on the magnitude of the force F. For a random DNA sequence, the number M of unzipped base pairs goes as M approximately (F - Fc)(-2) and diverges at the critical force Fc with an exponent chi = 2. We find that when excluded volume effect is taken into account for the unzipped part of the DNA, the exponent chi = 2 is not changed but the critical force Fc is changed. The force versus temperature phase diagram depends on only two parameters in the model, the persistence length and the denaturation temperature. Furthermore a scaling form of the phase diagram can be found. This scaling form is parameter independent and depends only on the spatial dimension. It applies to all DNA molecules and should provide a useful framework for comparison with experiments.  相似文献   

4.
Abstract

Phase diagrams for several oligonucleotide duplex -spermine systems have been constructed. These diagrams characterize the duplex and spermine concentrations ranges in which crystalline precipitates are formed. All of them are wedge-like form. The slope of the upper branch of the diagram is determined by the oligonucleotide length. The position of the lower branch depends on both the nucleotide sequence and its length. The position of the lower branch depends on both the nucleotide sequence and its length. It has been shown that the addition to the system ofMgCl2 and NaCl salts and MPD results in specific changes in the diagrams. A model for oligonucleotide duplex-spermine system has been suggested which explains the main characteristic features of the obtained phase diagrams. The experimental phase diagrams for the (pGpT)n · (pApC)n-spermine system (n = 2,3,4) have been analyzed ion terms of this model and the values of the binding constants of spermine and Mg2+ions binding to duplexes have been determined. It permitted to identify the complexes that precipitated in different regions of the phase diagrams under various conditions. The diagram obtained in the presence of a cobalt hexammine counterion is also considered. It has been shown that this phase diagram, in general, is similar to those obtained for the oligonucleotide duplex-spermine system.  相似文献   

5.
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea‐induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two‐state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m‐value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea‐denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ~40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions.  相似文献   

6.
The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (?60 °C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples.  相似文献   

7.
Typical physico-chemical studies of metal binding proteins are usually aimed at determination of the metal binding constant K for a native protein (K n), while the significance of the K value for the thermally denatured protein (K u) is usually underestimated. Meanwhile, metal binding induced shift of thermal denaturation transition of a single site metal binding protein is defined by K n to K u ratio, implying that knowledge of both K values is required for full characterization of the system. In the present work, the most universal approach to the studies of single site metal binding proteins, namely construction of a protein “phase diagram” in coordinates of free metal ion concentration – temperature, is considered in detail. The detailed algorithm of construction of the phase diagrams along with underlying mathematic procedures developed here may be of use for studies of other simple protein-target type systems, where target represents low molecular weight ligand. Analysis of the simplest protein-ligand system reveals that thermodynamic properties of apo-protein dictate the maximal possible increase of its affinity to any simple ligand upon thermal denaturation of the protein. Experimental and general problems coupled with the use of the phase diagrams are discussed.  相似文献   

8.
The phase properties of lipids have far-reaching consequences in membrane biology. Their influence ranges from domain formation in intact biomembranes to membrane protein reconstitution and crystallization. To exploit phase behavior in the spirit of rational design, it is imperative that the rules relating lipid molecular structure and liquid crystal or mesophase behavior be established. Phase behavior is quantitatively and concisely represented in the form of temperature-composition phase diagrams. A somewhat limited number of phase diagrams exists for the monoacylglycerols. The objective of the current study was to determine the quality of phase behavior prediction for a specific monoacylglycerol based on an analysis of the existing phase diagrams for related chain homologs. To this end, a phase diagram for the monononadecenoin (19:1c10)/water system was predicted in the temperature range from -15 degrees C to 120 degrees C and from 0% to 80% (w/w) water. The prediction was tested by constructing the corresponding phase diagram using low- and wide-angle x-ray diffraction, differential scanning calorimetry, and polarized light microscopy. The results show that the predicted and experimental phase diagrams agree remarkably well. They also highlight the need for additional phase studies of the type described to enlarge the data bank of phase diagrams and to strengthen the foundations of the rational design approach.  相似文献   

9.
10.
The melting transition of DNA–ligand complexes, allowing for two binding mechanisms to different DNA conformations is treated theoretically. The obtained results express the behavior of the experimentally measurable quantities, degree of denaturation, and concentrations of bound ligands on the temperature. The range of binding parameters is obtained, where denaturation curves become multiphasic. The possible application to the nanocomposites crystallization is discussed.  相似文献   

11.
The temperature trends of the standard thermodynamic functions of the native and denatured protein in solution are considered within the concept of excess mixing functions. It is assumed that some protein molecules adopt an intermediate state between native and denatured forms within the temperature range between cold and thermal denaturation and form metastable microphases as a result of a specific interaction with water. A phase diagram in the temperature–standard entropy coordinate plane representing an isobar family is proposed. Two limiting isobars are characterized by an entropy jump, which reflects the first-order phase transition between the native and denatured states. The isobars in the intermediate temperature range are represented as van der Waals curves, which reflect the equilibrium between the main phase of the molecules in native state and microphases. The difference between the phases disappears at critical points. It is assumed that the supercritical range is a macroscopically homogeneous single phase zone of reduced stability, which is represented by a dynamic system of monomers and oligomers of the native protein, monomers and clusters of the protein with partially unfolded structure. The phase diagram is collated with the elliptic phase diagram in the temperature–osmotic pressure plane.  相似文献   

12.
Rubens P  Heremans K 《Biopolymers》2000,54(7):524-530
The gelatinization of rice starch is reported as a function of temperature and pressure from the changes in the ir spectrum. The diagram that is observed is reminiscent of those obtained for the denaturation of proteins and the phase separation observed from the cloud point for several water soluble synthetic polymers. It is proposed that the reentrant shape of the diagram for starch is not only due to hydrogen bonding but also to the imperfect packing of amylose and amylopectin chains in the starch granule. The influence of pressure and temperature on thermodynamic parameters leading to this diagram is discussed.  相似文献   

13.
It was established that albumin of donor blood serum denatures in two temperature ranges. It is shown that the first stage of denaturation with Td = 61.5 degrees C is dominant and corresponds to melting of regions not bound to fatty acids. The second stage with Td = 80 degrees C corresponds to melting of regions bound to fatty acids. Serum denaturation heat is equal to 20.2 J/g dry protein. A change in denaturation heat capacity is 0.21 J/(g.K). Analysis of thermal parameters of deconvolution peaks showed that albumin of donor blood serum is in a fatless state and its multiple binding centers are essentially free as compared with freshly isolated albumin and may play an important role in binding of ligands in vivo. The thermal parameters of denaturation of some important human blood serum proteins including gamma-globulins, transferrin ceruloplasmin and protease inhibitors were also determined.  相似文献   

14.
The aim of this study was to compare between the changes undergone by the dermal collagen framework when heated by IR laser radiation and by traditional means and to reveal the specific features of the dermal matrix modification under moderate IR laser irradiation. Rabbit skin specimens were heated to 50°C, 55°C, 60°C and 65°C in a calorimeter furnace and with a 1.68‐μm fiber Raman laser. The proportion of the degraded collagen macromolecules was determined by differential scanning calorimetry. Changes in the architectonics of the collagen framework were revealed by using standard, phase‐contrast, polarization optical and scanning electron microscopy techniques. The collagen denaturation and dermal matrix amorphization temperature in the case of laser heating proved to be lower by 10°C than that for heating in the calorimeter furnace. The IR laser treatment of the skin was found to cause a specific low‐temperature (45°C‐50°C) transformation of its collagen framework, with some collagen macromolecules remaining intact. The transformation reduces to the splitting of collagen bundles and distortion of the course of collagen fibers. The denaturation of collagen macromolecules in the case of traditional heating takes its course in a threshold manner, so that their pre‐denaturation morphological changes are insignificant.  相似文献   

15.
Ligand-induced biphasic protein denaturation   总被引:3,自引:0,他引:3  
The results of a thermodynamic calculation of the excess heat capacity that is based on experimental observations and that incorporates the effects of ligand binding on the two-state, thermal denaturation of a protein are presented. For a protein with a single-binding site on the native species and at subsaturating concentrations of ligand, bimodal or unimodal thermograms were computed merely by assuming a larger or smaller ligand association constant, respectively. The calculated thermograms for this simplified case show the salient features of those observed by differential scanning calorimetry for defatted human albumin monomer in the absence and presence of three ligands for which the protein has higher, intermediate, and lower affinity (Shrake, A., and Ross, P. D. (1988) J. Biol. Chem. 263, 15392-15399). The computation demonstrates that biphasic unfolding can result from a significant increase in the free energy of denaturation (and the transition temperature) during the course of unfolding due to a substantial increase in free ligand concentration caused by the release of bound ligand by denaturing protein. Such ligand-induced biphasic denaturation does not relate to macromolecular substructure but derives from a perturbation, during unfolding, of the ligand binding equilibrium, which is coupled to the equilibrium between the folded and unfolded protein species. Thus, this bimodality is not limited to thermally induced unfolding but is operative independent of the means used to effect denaturation and therefore must be considered when studying any macromolecular folding/unfolding reaction in the presence of ligand.  相似文献   

16.
The effect of Mg2+, putrescine, diaminopropane, N1-acetylspermidine, N8-acetylspermidine, spermidine, and spermine on the thermal denaturation of calf thymus DNA was investigated. As in a previous study with magnesium [W.F. Dove and N. Davidson, (1962) J. Mol. Biol. 5, 467-478], these ligands were found to raise the thermal denaturation temperature of the DNA and to broaden the thermal denaturation curve dramatically at the point where 10 to 20% of the DNA charge had been neutralized. At higher levels of charge neutralization the curves became sharper again. This behavior was due to differential binding of the ligands to single- and double-stranded DNA. The broadening was used to determine the ratio of the association constants of each ligand to the two forms of DNA using either an independent sites model of binding or an excluded sites model. The results show that the primary mode of binding of the ligands to DNA is electrostatic but that important secondary, nonelectrostatic, effects are also present.  相似文献   

17.
Replication of ultraviolet-irradiated simian virus 40 in monkey kidney cells   总被引:14,自引:0,他引:14  
This paper extends the concepts of linkage and control, previously studied in single phase allosteric and polysteric systems, to multiple phase (polyphasic) systems. In particular, a study has been made of the dependence of the solubility of sickle cell hemoglobin on oxygen partial pressure. Phase diagrams are obtained from observations of birefringence changes of hemoglobin solutions in a thin film optical cell. The effects of temperature and pH are found to be correlated largely with oxygen binding curves for non-gelling solutions. This suggests only small enthalpy and proton release changes for the gelation process. Variable time delays for the onset of birefringence were observed for partial deoxygenation of a fully oxygenated sample. The reciprocal of the time delay depends on a high power of the supersaturation ratio. The nucleation kinetics are, thereby, similar to those found in fully deoxygenated solutions in temperature-jump studies. Oxygen binding curves for non-gelling solutions of sickle cell hemoglobin were used in conjunction with the phase diagram results to evaluate oxygen binding curves for the polymer gel. Account was taken of the water content of the gel and of the large non-ideality of the solution. Analysis of the phase diagram data based on polyphasic linkage relationships suggests that some reversible oxygen-binding by the gel is present. The difference in oxygen binding between solution and gel obtained in this way is similar to that found by Hofrichter (1979) for carbon monoxide.  相似文献   

18.
A method that enables temperature-composition phase diagram construction at unprecedented rates is described and evaluated. The method involves establishing a known temperature gradient along the length of a metal rod. Samples of different compositions contained in long, thin-walled capillaries are positioned lengthwise on the rod and "equilibrated" such that the temperature gradient is communicated into the sample. The sample is then moved through a focused, monochromatic synchroton-derived x-ray beam and the image-intensified diffraction pattern from the sample is recorded on videotape continuously in live-time as a function of position and, thus, temperature. The temperature at which the diffraction pattern changes corresponds to a phase boundary, and the phase(s) existing (coexisting) on either side of the boundary can be identified on the basis of the diffraction pattern. Repeating the measurement on samples covering the entire composition range completes the phase diagram. These additional samples can be conveniently placed at different locations around the perimeter of the cylindrical rod and rotated into position for diffraction measurement. Temperature-composition phase diagrams for the fully hydrated binary mixtures, dimyristoylphosphatidylcholine (DMPC)/dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE)/DPPC, have been constructed using the new temperature gradient method. They agree well with and extend the results obtained by other techniques. In the DPPE/DPPC system structural parameters as a function of temperature in the various phases including the subgel phase are reported. The potential limitations of this steady-state method are discussed.  相似文献   

19.
A V Gorelov  V N Morozov 《Biofizika》1988,33(2):216-219
A method for taking stress-strain diagrams in microsamples prepared from glutaraldehyde-treated monocrystals and amorphous films of hen egg-white lysozyme has been developed. Analysis of the diagrams has shown that the deformation obeys Hooke's law within 0-2%. Upon further deformation of a crystalline sample (up to 6-10%) when a critical tension, sigma cr, is reached, the protein molecules in the sample denature and become greatly extended. Depending on crystal type and crystallographic direction the sample length increases 2 to 4 times. The sample deformation accompanying denaturation is reversible: when the sample is kept at high temperature it restores completely its initial length. The critical stress is essentially dependent on temperature, hydration level, urea concentration, the factors affecting intra- and intermolecular interactions.  相似文献   

20.
A library of bidentate fragments linked through an oligonucleotide duplex was tested for binding to streptavidin. When one fragment was biotin, only biotin-containing duplexes were selected by streptavidin but when heated above the melting temperature, only bidentate biotin ligands were obtained. Thermal denaturation experiments showed that the melting temperature, thus stability, of the monodentate versus bidentate binding ligand increased from 59 to 71 degrees C in the presence of streptavidin. Substituting biotin with 2-iminobiotin led to the exclusion of all other duplexes by the bidentate iminobiotin duplex in binding streptavidin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号