首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Bovine embryonic stem (ES) cell lines reported to date vary in morphology and marker expression (e.g., alkaline phosphatase [ALPL], stage-specific embryonic antigen 4 [SSEA4], and OCT4) that normally are associated with the undifferentiated, pluripotent state. These observations suggest that the proper experimental conditions for consistently producing bovine ES cells have not been identified. Here, we report three bovine ES cell lines, one from in vitro-fertilized and two from nuclear transfer embryos. These bovine ES cells grew in large, multicellular colonies resembling the mouse ES and embryonic germ (EG) cells and human EG cells. Throughout the culture period, most of the cells within the colonies stained positive for ALPL and the cell surface markers SSEA4 and OCT4. The staining patterns of nuclear transfer ES cells were identical to those of the blastocysts generated in vitro yet different from most previously reported bovine ES cell lines, which were either negative or not detected. After undifferentiated culture for more than 1 yr, these cells maintained the ability to differentiate into embryoid bodies and derivatives of all three EG layers, thus demonstrating their pluripotency. However, unlike the mouse and human ES cells, following treatment with trypsin, type IV collagenase, or protease E, our bovine ES cells failed to self-renew and became spontaneously differentiated. Presumably, this resulted from an interruption of the self-renewal pathway. In summary, we generated pluripotent bovine ES cells with morphology similar to those of established ES cells in humans and mice as well as marker-staining patterns identical to those of the bovine blastocysts.  相似文献   

5.
6.
Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution, which are recapitulated during embryonic development. Neural stem cells and their derived germinal cells are coordinated during cerebral cortex development to produce the appropriate amounts and types of neurons. This process is further complicated in gyrencephalic species, where newborn neurons must disperse in the tangential axis to expand the cerebral cortex in surface area. Here, we review advances that have been made over the last decade in understanding the nature and diversity of telencephalic neural stem cells and their roles in cortical development, and we discuss recent progress on how newly identified types of cortical progenitor cell populations may have evolved to drive the expansion and folding of the mammalian cerebral cortex.  相似文献   

7.
8.
9.
In the present study, we compared the incidence of aneuploidy in in vitro fertilized domestic cat embryos (DSH-IVF) with that of African Wildcat (AWC) cloned embryos reconstructed with AWC fibroblast donor cells from different passages (AWC-NT). Fibroblast cells were cultured to passages 1 (P1), 3 (P3), 4 (P4), and 9 (P9), after which cells at each passage were karyotyped and serum-starved before being frozen for nuclear transfer. AWC-NT embryos were produced by fusion of a single AWC somatic cell at P1, P3, P4, or P9 to enucleated domestic cat cytoplast derived from in vitro matured (IVU) oocytes. DSH-IVF embryos were produced after IVU oocytes were fertilized in vitro with domestic cat spermatozoa. To determine chromosome numbers, embryos (2-4-cell) or fibroblast cells were cultured in medium containing 0.28 microg/mL of Colcemid for 22-24 h or 15-24 h, respectively. Subsequently, embryos and cells were placed in hypotonic solution, fixed, and stained for analysis of chromosome spreads by bright field microscopy. Chromosomal abnormalities in AWC fibroblast cells increased progressively during culture in vitro: P1 (43%), P3 (46%), P4 (62%), and P9 (59%). In fibroblast cells, hypoploidy (94/202, 46%) was the major chromosomal abnormality, and it occurred more frequently than hyperploidy (14/202, 7%; p < 0.05). While the percentage of hyperploid cells remained stable during all passages, the proportion of hypoploidy in fibroblast cells increased significantly after P4. The overall incidence of chromosomal abnormalities in AWC-NT embryos at P1 (45%), P3 (60%), and P4 (50%) was similar to that of the fibroblast cells from which they were derived; however, the incidence was higher for embryos reconstructed with donor fibroblasts at P9 (89%). Hypoploidy was the most common chromosomal abnormality observed in either AWC-NT or DSH-IVF embryos. AWCNT embryos reconstructed with donor cells at early passages (P1, P3, and P4) had similar frequencies of chromosomal diploidy, as did DSH-IVF embryos. Accordingly, based on the present results, for NT we are currently using cat donor cells at early passages, when the percentage of cells with chromosomal abnormalities is low. It is recommended that the chromosomal stability of each cell line be analyzed before use as NT donor cells to reduce the incidence of chromosomal anomalies in reconstructed embryos and to possibly produce a subsequent increase in cloning efficiency.  相似文献   

10.
This paper describes the neurons in different cortical areas and traces their postnatal changes. Rapid Golgi and Golgi--Kopsch impregnation were carried out in 1-day-old and 9-day-old kittens. The maturation of the pyramidal neurons can be observed mainly on their basal dendritic orientation and on development of the dendritic spines. The differentiation of the interneurons (non-pyramidal) also proceeds on the first postnatal days. These, though slightly less mature than the associated pyramidal neurons, are identifiable already on the first postnatal day. It is concluded that there are significant differences in the maturation of the neurons in the various cortical areas.  相似文献   

11.
Yang X  Smith SL 《Cell research》2007,17(12):969-970
Therapeutic cloning refers to the derivation of embryonic stem cells (ntESC) from embryos derived from somatic cell nuclear transfer (SCNT) also known as cloning. Cloning involves transplanting a differentiated cell into an oocyte that has had its nucleus (DNA) removed. The reconstructed oocyte can be activated to divide and develop into an embryo. The process that allows this to happen is termed nuclear reprogramming, and is defined as the mechanism through which a differentiated cell de-differentiates or returns to a totipotent state (capable of giving rise to any cell type, including extra-embryonic) and directs embryonic development [1]. Cells from blastocyst stage cloned embryos can be used to generate ntESC lines. Such cell lines can differentiate into any adult cell type, and have tremendous potential for patient-specific disease therapy [2].  相似文献   

12.
Bovine embryonic stem-like cells (ES-like cells) appear to maintain a normal diploid karyotype indefinitely during culture in vitro and to express marker proteins that are characteristic of ES cells from mice, namely, alkaline phosphatase (AP), stage-specific embryonic antigen-1 (SSEA-1), STAT-3, and Oct 4. After proliferation of undifferentiated ES-like cells in vitro, some bovine ES-like cells differentiated to neural precursor cells, which were cultured in the presence of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and platelet-derived growth factor (PDGF). In addition, calves were successfully cloned using ES-like cells and the frequency of term pregnancies for blastocysts derived from ES-like cells was higher than those of early pregnancies and maintained pregnancies after nuclear transplantation (NT) with bovine somatic cells. Successful cloning from bovine ES-like cells should allow the introduction into cattle of specific genetic characteristics of biomedical and/or agricultural importance.  相似文献   

13.
In the present study, we have characterized an isolated population of porcine bone marrow mesenchymal stem cells (MSCs) for multilineage commitment and compared the developmental potential of cloned embryos with porcine MSCs and fetal fibroblasts (FFs). MSCs exhibited robust alkaline phosphatase activity and later transformed into mineralized nodules following osteoinduction. Furthermore, MSCs underwent adipogenic and chondrogenic differentiation by producing lipid droplets and proteoglycans, respectively. Primary cultures of FFs from a female fetus at ~30 day of gestation were established. Donor cells at 3-4 passage were employed for nuclear transfer (NT). Cell cycle analysis showed that the majority of MSCs in confluence were in the G0/G1 stage. Cumulus-oocyte complexes were matured and fertilized in vitro (IVF) as control. The cleavage rate was significantly (P<0.05) higher in IVF than in NT embryos with MSCs and FFs (84.54.6% vs. 52.25.4% and 50.85.2%, respectively). However, blastocyst rates in IVF and NT embryos derived from MSCs (20.62.5% and 18.43.0%) did not differ, but were significantly (P<0.05) higher than NT derived from FFs (9.52.1%). Total cell number and the ratio of ICM to total cells among blastocysts cloned from MSCs (34.45.2 and 0.380.08, respectively) were significantly (P<0.05) higher than those from FFs (22.65.5 and 0.180.12, respectively). Proportions of TUNEL positive cells in NT embryos from FFs (7.31.8%) were significantly (P<0.05) higher than in MSCs (4.61.3%) and IVF (2.50.9%). The results clearly demonstrate that multipotent bone marrow MSCs have a greater potential as donor cells than FFs in achieving enhanced production of cloned porcine embryos.  相似文献   

14.
15.
The mechanisms that have evolved to maintain genome stability during cell cycle progression are challenged when a somatic cell nucleus is placed in a meiotic environment such as the ooplasm. Chromosomal spindle aberrations ensue in the majority of reconstructed oocytes within 2 h of transplantation, but it is not known if they recover or persist with the onset of embryonic divisions. We analyzed the chromosomal spindles and the karyotype of cumulus cell-derived mouse clones through the initial and hence most critical mitoses. Cloned embryos start out with less aneuploidy than fertilized embryos but surpass them after ES cell derivation, as measured by frequencies of chromosome trisomies and structural rearrangements. Despite the limited proportion of cloned mouse embryos that reach late gestation, a phenotypic mutation lacking a karyotypic mark was found in a newborn mouse cloned in 2002 and has been inherited since by its offspring. These data concur with a prevalent epigenetic, rather than genetic, basis for cloned embryo failure, but they also warn against the temptation to think that all conditions of clones are epigenetic and recover during gametogenesis. The cloning procedure is defenseless (no matter how technically refined) towards pre-existing or induced subchromosomal mutations that are below the experimental detection limit of the cytogenetic assay.  相似文献   

16.
17.
Full-term development occurred when nuclei from mouse embryonic stem (ES) cells, synchronized in metaphase with nocodazole, were fused with enucleated oocytes or nuclei of reconstituted eggs and again fused with the enucleated blastomeres of fertilized two-cell embryos using inactivated Sendai virus. Two surviving male mice were derived from undifferentiated ES cell nuclei, one from single nuclear transfer and another from serial nuclear transfer. Both were noticeably small and died within 24 hr of birth for unknown reasons. These findings demonstrate that nuclear transfer of ES cells using the fusion method produces young, as does the piezoelectric-actuated nuclear transfer. J. Exp. Zool. 289:139-145, 2001.  相似文献   

18.
The accumulation of histone H1o has been studied in neuronal and glial nuclei from rat cerebral cortex during postnatal development. In neurons H1o represents ~2% of the H1 content at birth and remains unchanged until day 8. Beyond this point H1o accumulates rapidly until day 18, where it levels off at 16% of H1. The midpoint of the transition is at day 14. In glial cells H1o represents ~2.5% of the H1 at birth. It starts to accumulate between days 18 and 21; its concentration raises rapidly up to day 30 slowing down from then on. At day 300 (the farthest point examined) it represents 21% of H1. These results are discussed in relation to the events of the postnatal development of the cerebral cortex in the rat. It is concluded that Ho probably does not suppress cell proliferation.  相似文献   

19.
Y Shi  P Kirwan  FJ Livesey 《Nature protocols》2012,7(10):1836-1846
Efficient derivation of human cerebral neocortical neural stem cells (NSCs) and functional neurons from pluripotent stem cells (PSCs) facilitates functional studies of human cerebral cortex development, disease modeling and drug discovery. Here we provide a detailed protocol for directing the differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to all classes of cortical projection neurons. We demonstrate an 80-d, three-stage process that recapitulates cortical development, in which human PSCs (hPSCs) first differentiate to cortical stem and progenitor cells that then generate cortical projection neurons in a stereotypical temporal order before maturing to actively fire action potentials, undergo synaptogenesis and form neural circuits in vitro. Methods to characterize cortical neuron identity and synapse formation are described.  相似文献   

20.
Production of cloned embryos by nuclear transfer from adult somatic cells is a novel and promising technique in animal biotechnology. In spite of numerous reported viable offspring in various species, the efficiency of the technique remains very low. Embryonic and fetal mortality occurs all along pregnancy and during the peri-natal life, even months after birth. Both embryonic and placental dysfunctions might be involved. However the precise causes of such developmental failures are still unknown. In the present review, we report data from different studies which described the main defaults which have been observed after embryonic cloning in various species. The putative molecular and cellular causes of these developmental failures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号