首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prediction of membrane segments in sequences of membrane proteins is well known and important problem. Accuracy of the solution of this problem by methods that don't use homology search in additional data bank can be improved. There is a lack of testing data in this area because of small amount of real structures of membrane proteins. In this work, we create a testing set of structural alignments of membrane proteins, in which positioning of the membrane segments reflects agreement of known 3D-structures of proteins in the alignment. We propose a method for predicting position of membrane segments in multiple alignment based on forward-backward algorithm from HMM theory. This method not only allows to predict positions of membrane segments but also forms probability membrane profile, which can be used in multiple alignment methods that take into account secondary structure information about sequences. Method is implemented in computer program available on the World-Wide Web site http://bioinf.fbb.msu.ru/fwdbck/. Proposed method provides results better than MEMSAT method, which is nearly only tool for prediction of membrane segments in multiple alignments without additional homology search.  相似文献   

2.
RNA secondary structure prediction is one of the classic problems of bioinformatics. The most efficient approaches to solving this problem are based on comparative analysis. As a rule, multiple RNA sequence alignment and subsequent determination of a common secondary structure are used. A new algorithm was developed to obviate the need for preliminary multiple sequence alignment. The algorithm is based on a multilevel MEME-like iterative search for a generalized profile. The search for common blocks in RNA sequences is carried out at the first level. Then the algorithm refines the chains consisting of these blocks. Finally, the search for sets of common helices, matched with alignment blocks, is carried out. The algorithm was tested with a tRNA set containing additional junk sequences and with RFN riboswitches. The algorithm is available at http://bioinf.fbb.msu.ru/RNAAlign.  相似文献   

3.
The currently available body of decoded amino acid sequences of various proteins exceeds manifold the experimental capabilities of their functional annotation. Therefore, in silico annotation using bioinformatics methods becomes increasingly important. Such annotation is actually a prediction; however, this can be an important starting point for further laboratory research. This work describes a new method for predicting functionally important protein sites, SDPsite, on the basis of identification of specificity determinants. The algorithm proposed utilizes a protein family aglinment and a phylogenetic tree to predict the conserved positions and specificity determinants, map them onto the protein structure, and search for clusters of the predicted positions. Comparison of the resulting predictions with experimental data and published predictions of functional sites by other methods demonstrates that the results of SDPsite agree well with experimental data and exceed the results obtained with the majority of previous methods. SDPsite is publicly available at http://bioinf.fbb.msu.ru/SDPsite.  相似文献   

4.
5.
The RNA secondary structure prediction is a classical problem in bioinformatics. The most efficient approach to this problem is based on the idea of a comparative analysis. In this approach the algorithms utilize multiple alignment of the RNA sequences and find common RNA structure. This paper describes a new algorithm for this task. This algorithm does not require predefined multiple alignment. The main idea of the algorithm is based on MEME-like iterative searching of abstract profile on different levels. On the first level the algorithm searches the common blocks in the RNA sequences and creates chain of this blocks. On the next step the algorithm refines the chain of common blocks. On the last stage the algorithm searches sets of common helices that have consistent locations relative to common blocks. The algorithm was tested on sets of tRNA with a subset of junk sequences and on RFN riboswitches. The algorithm is implemented as a web server (http://bioinf.fbb.msu.ru/RNAAlign/).  相似文献   

6.
The current available data on protein sequences largely exceeds the experimental capabilities to annotate their function. So annotation in silico, i.e. using computational methods becomes increasingly important. This annotation is inevitably a prediction, but it can be an important starting point for further experimental studies. Here we present a method for prediction of protein functional sites, SDPsite, based on the identification of protein specificity determinants. Taking as an input a protein sequence alignment and a phylogenetic tree, the algorithm predicts conserved positions and specificity determinants, maps them onto the protein's 3D structure, and searches for clusters of the predicted positions. Comparison of the obtained predictions with experimental data and data on performance of several other methods for prediction of functional sites reveals that SDPsite agrees well with the experiment and outperforms most of the previously available methods. SDPsite is publicly available under http://bioinf.fbb.msu.ru/SDPsite.  相似文献   

7.
EDAS, an alternatively spliced human gene database, contains data on alignment of proteins, mRNAs, and ESTs. For 8324 human genes, the database contains information on all observed exons and introns and also elementary alternatives formed therefrom. The database allows one to filter the output data by varying the cutoff threshold according to the significance level. The database is available at http://www.genebee.msu.ru/edas/.  相似文献   

8.
MOTIVATION: An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. RESULTS: We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. AVAILABILITY: Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID  相似文献   

9.
The use of antigenicity scales based on physicochemical properties and the sliding window method in combination with an averaging algorithm and subsequent search for the maximum value is the classical method for B-cell epitope prediction. However, recent studies have demonstrated that the best classical methods provide a poor correlation with experimental data. We review both classical and novel algorithms and present our own implementation of the algorithms. The AAPPred software is available at http://www.bioinf.ru/aappred/.  相似文献   

10.
MOTIVATION: Membrane-bound proteins are a special class of proteins. The regions that insert into the cell-membrane have a profoundly different hydrophobicity pattern compared with soluble proteins. Multiple alignment techniques use scoring schemes tailored for sequences of soluble proteins and are therefore in principle not optimal to align membrane-bound proteins. RESULTS: Transmembrane (TM) regions in protein sequences can be reliably recognized using state-of-the-art sequence prediction techniques. Furthermore, membrane-specific scoring matrices are available. We have developed a new alignment method, called PRALINETM, which integrates these two features to enhance multiple sequence alignment. We tested our algorithm on the TM alignment benchmark set by Bahr et al. (2001), and showed that the quality of TM alignments can be significantly improved compared with the quality produced by a standard multiple alignment technique. The results clearly indicate that the incorporation of these new elements into current state-of-the-art alignment methods is crucial for optimizing the alignment of TM proteins. AVAILABILITY: A webserver is available at http://www.ibi.vu.nl/programs/pralinewww.  相似文献   

11.
EDAS, a database of alternatively spliced human genes, contains data on the alignment of proteins, mRNAs, and EST. It contains information on all exons and introns observed, as well as elementary alternatives formed from them. The database makes it possible to filter the output data by changing the cut-off threshold by the significance level. The database is accessible at http://www.gene-bee.msu.ru/edas/.  相似文献   

12.
ESyPred3D: Prediction of proteins 3D structures   总被引:1,自引:0,他引:1  
MOTIVATION: Homology or comparative modeling is currently the most accurate method to predict the three-dimensional structure of proteins. It generally consists in four steps: (1) databanks searching to identify the structural homolog, (2) target-template alignment, (3) model building and optimization, and (4) model evaluation. The target-template alignment step is generally accepted as the most critical step in homology modeling. RESULTS: We present here ESyPred3D, a new automated homology modeling program. The method gets benefit of the increased alignment performances of a new alignment strategy. Alignments are obtained by combining, weighting and screening the results of several multiple alignment programs. The final three-dimensional structure is build using the modeling package MODELLER. ESyPred3D was tested on 13 targets in the CASP4 experiment (Critical Assessment of Techniques for Proteins Structural Prediction). Our alignment strategy obtains better results compared to PSI-BLAST alignments and ESyPred3D alignments are among the most accurate compared to those of participants having used the same template. AVAILABILITY: ESyPred3D is available through its web site at http://www.fundp.ac.be/urbm/bioinfo/esypred/ CONTACT: christophe.lambert@fundp.ac.be; http://www.fundp.ac.be/~lambertc  相似文献   

13.
MOTIVATION: Many important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion are mediated by membrane proteins. Unfortunately, as these proteins are not water soluble, it is extremely hard to experimentally determine their structure. Therefore, improved methods for predicting the structure of these proteins are vital in biological research. In order to improve transmembrane topology prediction, we evaluate the combined use of both integrated signal peptide prediction and evolutionary information in a single algorithm. RESULTS: A new method (MEMSAT3) for predicting transmembrane protein topology from sequence profiles is described and benchmarked with full cross-validation on a standard data set of 184 transmembrane proteins. The method is found to predict both the correct topology and the locations of transmembrane segments for 80% of the test set. This compares with accuracies of 62-72% for other popular methods on the same benchmark. By using a second neural network specifically to discriminate transmembrane from globular proteins, a very low overall false positive rate (0.5%) can also be achieved in detecting transmembrane proteins. AVAILABILITY: An implementation of the described method is available both as a web server (http://www.psipred.net) and as downloadable source code from http://bioinf.cs.ucl.ac.uk/memsat. Both the server and source code files are free to non-commercial users. Benchmark and training data are also available from http://bioinf.cs.ucl.ac.uk/memsat.  相似文献   

14.
Shen H  Chou JJ 《PloS one》2008,3(6):e2399
Prediction of transmembrane helices (TMH) in alpha helical membrane proteins provides valuable information about the protein topology when the high resolution structures are not available. Many predictors have been developed based on either amino acid hydrophobicity scale or pure statistical approaches. While these predictors perform reasonably well in identifying the number of TMHs in a protein, they are generally inaccurate in predicting the ends of TMHs, or TMHs of unusual length. To improve the accuracy of TMH detection, we developed a machine-learning based predictor, MemBrain, which integrates a number of modern bioinformatics approaches including sequence representation by multiple sequence alignment matrix, the optimized evidence-theoretic K-nearest neighbor prediction algorithm, fusion of multiple prediction window sizes, and classification by dynamic threshold. MemBrain demonstrates an overall improvement of about 20% in prediction accuracy, particularly, in predicting the ends of TMHs and TMHs that are shorter than 15 residues. It also has the capability to detect N-terminal signal peptides. The MemBrain predictor is a useful sequence-based analysis tool for functional and structural characterization of helical membrane proteins; it is freely available at http://chou.med.harvard.edu/bioinf/MemBrain/.  相似文献   

15.
Genome-wide multiple sequence alignments (MSAs) are a necessary prerequisite for an increasingly diverse collection of comparative genomic approaches. Here we present a versatile method that generates high-quality MSAs for non-protein-coding sequences. The NcDNAlign pipeline combines pairwise BLAST alignments to create initial MSAs, which are then locally improved and trimmed. The program is optimized for speed and hence is particulary well-suited to pilot studies. We demonstrate the practical use of NcDNAlign in three case studies: the search for ncRNAs in gammaproteobacteria and the analysis of conserved noncoding DNA in nematodes and teleost fish, in the latter case focusing on the fate of duplicated ultra-conserved regions. Compared to the currently widely used genome-wide alignment program TBA, our program results in a 20- to 30-fold reduction of CPU time necessary to generate gammaproteobacterial alignments. A showcase application of bacterial ncRNA prediction based on alignments of both algorithms results in similar sensitivity, false discovery rates, and up to 100 putatively novel ncRNA structures. Similar findings hold for our application of NcDNAlign to the identification of ultra-conserved regions in nematodes and teleosts. Both approaches yield conserved sequences of unknown function, result in novel evolutionary insights into conservation patterns among these genomes, and manifest the benefits of an efficient and reliable genome-wide alignment package. The software is available under the GNU Public License at http://www.bioinf.uni-leipzig.de/Software/NcDNAlign/.  相似文献   

16.
During evolution of proteins from a common ancestor, one functional property can be preserved while others can vary leading to functional diversity. A systematic study of the corresponding adaptive mutations provides a key to one of the most challenging problems of modern structural biology – understanding the impact of amino acid substitutions on protein function. The subfamily-specific positions (SSPs) are conserved within functional subfamilies but are different between them and, therefore, seem to be responsible for functional diversity in protein superfamilies. Consequently, a corresponding method to perform the bioinformatic analysis of sequence and structural data has to be implemented in the common laboratory practice to study the structure–function relationship in proteins and develop novel protein engineering strategies. This paper describes Zebra web server – a powerful remote platform that implements a novel bioinformatic analysis algorithm to study diverse protein families. It is the first application that provides specificity determinants at different levels of functional classification, therefore addressing complex functional diversity of large superfamilies. Statistical analysis is implemented to automatically select a set of highly significant SSPs to be used as hotspots for directed evolution or rational design experiments and analyzed studying the structure–function relationship. Zebra results are provided in two ways – (1) as a single all-in-one parsable text file and (2) as PyMol sessions with structural representation of SSPs. Zebra web server is available at http://biokinet.belozersky.msu.ru/zebra.  相似文献   

17.
Bernsel A  Viklund H  Elofsson A 《Proteins》2008,71(3):1387-1399
Compared with globular proteins, transmembrane proteins are surrounded by a more intricate environment and, consequently, amino acid composition varies between the different compartments. Existing algorithms for homology detection are generally developed with globular proteins in mind and may not be optimal to detect distant homology between transmembrane proteins. Here, we introduce a new profile-profile based alignment method for remote homology detection of transmembrane proteins in a hidden Markov model framework that takes advantage of the sequence constraints placed by the hydrophobic interior of the membrane. We expect that, for distant membrane protein homologs, even if the sequences have diverged too far to be recognized, the hydrophobicity pattern and the transmembrane topology are better conserved. By using this information in parallel with sequence information, we show that both sensitivity and specificity can be substantially improved for remote homology detection in two independent test sets. In addition, we show that alignment quality can be improved for the most distant homologs in a public dataset of membrane protein structures. Applying the method to the Pfam domain database, we are able to suggest new putative evolutionary relationships for a few relatively uncharacterized protein domain families, of which several are confirmed by other methods. The method is called Searcher for Homology Relationships of Integral Membrane Proteins (SHRIMP) and is available for download at http://www.sbc.su.se/shrimp/.  相似文献   

18.

Background

Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate.

Results

We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software.

Conclusions

SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.  相似文献   

19.
Membrane protein is the prime constituent of a cell, which performs a role of mediator between intra and extracellular processes. The prediction of transmembrane (TM) helix and its topology provides essential information regarding the function and structure of membrane proteins. However, prediction of TM helix and its topology is a challenging issue in bioinformatics and computational biology due to experimental complexities and lack of its established structures. Therefore, the location and orientation of TM helix segments are predicted from topogenic sequences. In this regard, we propose WRF-TMH model for effectively predicting TM helix segments. In this model, information is extracted from membrane protein sequences using compositional index and physicochemical properties. The redundant and irrelevant features are eliminated through singular value decomposition. The selected features provided by these feature extraction strategies are then fused to develop a hybrid model. Weighted random forest is adopted as a classification approach. We have used two benchmark datasets including low and high-resolution datasets. tenfold cross validation is employed to assess the performance of WRF-TMH model at different levels including per protein, per segment, and per residue. The success rates of WRF-TMH model are quite promising and are the best reported so far on the same datasets. It is observed that WRF-TMH model might play a substantial role, and will provide essential information for further structural and functional studies on membrane proteins. The accompanied web predictor is accessible at http://111.68.99.218/WRF-TMH/.  相似文献   

20.
MOTIVATION: Membrane domain prediction has recently been re-evaluated by several groups, suggesting that the accuracy of existing methods is still rather limited. In this work, we revisit this problem and propose novel methods for prediction of alpha-helical as well as beta-sheet transmembrane (TM) domains. The new approach is based on a compact representation of an amino acid residue and its environment, which consists of predicted solvent accessibility and secondary structure of each amino acid. A recently introduced method for solvent accessibility prediction trained on a set of soluble proteins is used here to indicate segments of residues that are predicted not to be accessible to water and, therefore, may be 'buried' in the membrane. While evolutionary profiles in the form of a multiple alignment are used to derive these simple 'structural profiles', they are not used explicitly for the membrane domain prediction and the overall number of parameters in the model is significantly reduced. This offers the possibility of a more reliable estimation of the free parameters in the model with a limited number of experimentally resolved membrane protein structures. RESULTS: Using cross-validated training on available sets of structurally resolved and non-redundant alpha and beta membrane proteins, we demonstrate that membrane domain prediction methods based on such a compact representation outperform approaches that utilize explicitly evolutionary profiles and multiple alignments. Moreover, using an external evaluation by the TMH Benchmark server we show that our final prediction protocol for the TM helix prediction is competitive with the state-of-the-art methods, achieving per-residue accuracy of approximately 89% and per-segment accuracy of approximately 80% on the set of high resolution structures used by the TMH Benchmark server. At the same time the observed rates of confusion with signal peptides and globular proteins are the lowest among the tested methods. The new method is available online at http://minnou.cchmc.org.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号