首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gossypolone, a proposed major metabolite of gossypol, was synthesized and investigated for its effect on progesterone synthesis in cultured bovine luteal cells. Gossypolone inhibited human chorionic gonadotropin(hCG)-stimulated progesterone secretion, reduced substrate-enhanced conversions of 25-hydroxycholesterol to pregnenolone and of pregnenolone to progesterone in a dose-dependent fashion. These findings indicate that gossypolone inhibits not only 3β-hydroxysteroid dehydrogenase (3β-HSD) activity, as gossypol does, but also side-chain cleavage enzyme complex (cytochrome P450scc activity. However, the two compounds appear to have a similar potency in inhibiting progesterone secretion. Both gossypolone and gossypol (8.5 μM) induced morphological changes in cellular organelles.  相似文献   

2.
We studied the effects of calcium (Ca2+) ions in progesterone (P) production by separated small and large luteal cells. Corpora lutea were collected from 31 heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. P accumulation in cells plus media was determined after incubating 1 x 10(5) small and 5 x 10(3) large cells for 2 and 4 h respectively. Removal of Ca2+ from the medium did not influence basal P production in the small cells (P greater than 0.05). However, stimulation of P by luteinizing hormone (LH), prostaglandin E2 (PGE2), 8-bromo-cyclic 3',5' adenosine monophosphate (8-Br-cAMP) and prostaglandin F2 alpha (PGF2 alpha) was impaired (P less than 0.05) by low Ca2+ concentrations. LH and PGE2-stimulated cAMP production was not altered by low extracellular Ca2+ concentrations, and PGF2 alpha had no effect on cAMP. In contrast, basal as well as LH and forskolin-stimulated P production were attenuated (P less than 0.05) in Ca2(+)-deficient medium in the large cells. However, P production stimulated by 8-Br-cAMP was not altered in Ca2(+)-deficient medium. Steroidogenesis in large cells was also dependent on intracellular Ca2+, since 8-N, N-diethylamineocytyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular Ca2+ release and/or action, suppressed (P less than 0.05) basal, LH and 8-Br-cAMP stimulated P. In contrast, basal P in small cells was not altered by TMB-8; whereas LH-stimulated P was reduced 2-fold (P less than 0.05). The calcium ionophore, A23187, inhibited LH-stimulated P in small cells and both basal and agonist-stimulated P in large cells. These studies show that basal P production in small cells does not require Ca2+ ions, while hormone-stimulated P production in small cells and both basal and hormone-stimulated P in large cells do require Ca2+. The inhibitory effect of Ca2+ ion removal was exerted prior to the generation of cAMP in the large cells, but distal to cAMP generation in hormone-stimulated small cells. The calmodulin/protein kinase C antagonist, W-7, also inhibited both basal and hormone-stimulated P production in both small and large luteal cells, indicating that P production in luteal cells also involves Ca2(+)-calmodulin/protein kinase C-dependent mechanisms.  相似文献   

3.
Experiments were conducted to examine the effect of cyclodextrin-encapsulated beta-carotene on basal or cholesterol (cyclodextrin-encapsulated), LH and dibutyryl cyclic AMP (dbcAMP)-stimulated progesterone production by bovine corpus luteum cells isolated from mid-luteal heifer ovaries by collagenase digestion. Cells were cultured with serum-free DMEM/Ham's F12 medium in serum pre-treated plastic culture dishes for periods of up to 11 days. Medium was replaced after 24h and thereafter every 48 h. Beta-carotene was added to cultures in a carrier molecule, dimethyl-beta-cyclodextrin, to facilitate dissolution. All treatments were started on day 3 of culture. Treatment of cells with 1 or 2 micromol/l beta-carotene resulted in sharp inhibition of progesterone production. On the contrary, treatment of cells with 0.1 micromol/l beta-carotene resulted in significant stimulation (P<0.05) of both basal and cholesterol-stimulated progesterone secretion. The effect of beta-carotene on LH or dbcAMP-stimulated progesterone production was also examined. Treatment of cells with LH or dbcAMP always resulted in stimulation of progesterone secretion (P<0.001). However, cells treated with LH plus beta-carotene or dbcAMP plus beta-carotene both produced significantly (P<0.01) less progesterone relative to those cells treated with LH or dbcAMP alone on days 7, 9 and 11 of culture. These results indicate that beta-carotene can enhance luteal steroidogenesis when present at low concentrations but is inhibitory at higher concentrations and that encapsulation of beta-carotene in cyclodextrin is an effective method of supplying it to cells in culture.  相似文献   

4.
Endothelin-1 (ET-1), a vasoconstrictor and mitogenic peptide that plays an important role within the endocrine/reproductive system, is synthesized by oviduct cells and regulates tubal contractility. Because 17beta-estradiol (estradiol) regulates oviduct function by influencing the synthesis of autocrine/paracrine factors, estradiol may also regulate ET-1 synthesis. Furthermore, environmental estrogens (EEs; phytoestrogens and xenoestrogens), which structurally resemble estradiol and possess estrogenic activity, may mimic the effects of estradiol on ET-1 synthesis and may influence the reproductive system. Using cultures of bovine oviduct cells (epithelial cells:fibroblasts, 1:1), we investigated and compared the modulatory effects of estradiol, phytoestrogens, and xenoestrogens on ET-1 synthesis and determined whether these effects were estrogen receptor (ER) mediated. A quantitative ELISA for ET-1 in the culture medium revealed that 17beta-estradiol inhibits ET-1 synthesis in a concentration-dependent manner (4-400 nmol/L). In contrast to estradiol, ET-1 synthesis was induced in cell cultures treated with xenoestrogens in the following order of potency (0.1 micromol/L): 4-hydroxy-trichlorobiphenyl > 4-hydroxy-dichlorobiphenyl > trichlorobiphenyl. The stimulatory effects of xenoestrogens on ET-1 production were mimicked by the phytoestrogens biochanin-A and genistein but not by formononetin, equol, and daidzein. The oviduct cells expressed both ERs (alpha and beta), but the modulatory effects of estradiol, but not EEs, on ET-1 synthesis were blocked by ICI-182 780 (1 microM), a pure ER antagonist. Our results provide evidence that estradiol inhibits ET-1 synthesis in oviduct cells via an ER-dependent mechanism, whereas, EEs induce ET-1 synthesis via an ER-independent mechanism. The contrasting effects of EEs on ET-1 synthesis suggests that EEs may act as endocrine modulators/disruptors and may have deleterious effects on the reproductive system by adversely influencing the biology and physiology of the oviduct.  相似文献   

5.
Follicular fluid from large follicles of cows was extracted with charcoal and filtered through an Amicon XM-50 membrane. The XM-50 filtrate was further fractionated on a column of Fractogel TSK HW-40 (s) using Krebs-Ringer-phosphate buffer (1/100th dilution), pH 7.2, as an eluant. Two fractions (1 and 2) were obtained. Inhibition of progesterone secretion by small luteal cells was associated with the XM-50 filtrate and Fraction 2. Whole follicular fluid, the XM-50 retentate and Fraction 1 had no significant inhibitory activity. Fraction 2, which contained about 1/100,000th of the original follicular fluid proteins, inhibited the LH- or (Bu)2cAMP-induced progesterone production during a 2-h incubation. This inhibition was dose-dependent. Fraction 2 also inhibited LH-induced cAMP accumulation, but did not affect the conversion of pregnenolone to progesterone or the basal progesterone production. The molecular weight of the inhibitory factor was estimated to be less than 10,000 and its ability to inhibit steroidogenesis was lost after digestion with protease but retained after heating for 60 min at 75 degrees C. These results demonstrate that bovine follicular fluid contains a heat-stable factor likely to be a polypeptide and which suppresses the steroidogenic response of small luteal cells to LH. The action of this inhibitory factor could involve both an inhibition of the LH-induced synthesis of cAMP and an inhibition of the action of cAMP.  相似文献   

6.
7.
Histone H2A competitively inhibits binding of GnRH to high affinity rat ovarian receptor sites and blocks gonadotropin-stimulated steroid and cAMP accumulation during culture of rat granulosal or luteal cells. The objective of our study was to examine the progesterone suppressive effects of histone H2A on bovine luteal cells. In the first study, luteal cells were treated at Time = 0 h with a partially purified preparation of bovine ovarian histone H2A (3 ng GnRH equivalents, 800 micrograms protein), equivalent amounts of GnRH (3 ng), or BSA (800 micrograms) and incubated for a total of 4 h. At Time = 2 h, cells were treated with 5 ng bovine LH (bLH) or with medium. Histone H2A completely blocked both basal and LH-induced accumulation of progesterone compared with untreated cultures or cultures treated with bLH. Neither BSA nor GnRH suppressed LH-induced progesterone accumulation. In the second study, histone H2A was added to cultures at Time = 0 h and bovine luteal cells were cultured for 8 h. After 2 h of treatment, histone H2A (3 ng GnRH equivalents) was removed from selected cultures and replaced with fresh medium. Four hours later cultures were treated with 5 ng bLH or medium. LH treatment of cultures from which histone H2A had been removed resulted in an increase in accumulation of progesterone compared with control cultures treated throughout the treatment period with histone H2A. The third study examined the effect of 9-181 pg GnRH equivalents (1.7-34 micrograms protein) of a highly purified preparation of bovine ovarian histone H2A on basal and LH-induced progesterone production during 2 or 3 h of culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The action of prostaglandin F2 alpha (PG F2 alpha) on incubated small bovine luteal cells in the presence or in the absence of bovine luteinizing hormone (LH) or dibutyryl cyclic adenosine monophosphate (db cAMP) was investigated. In the absence of LH and db cAMP, PG F2 alpha stimulated progesterone synthesis at concentrations of 10 ng/ml and 100 ng/ml but had no effects at concentrations below 1 ng/ml. PG F2 alpha partially inhibited the LH or db cAMP stimulated progesterone synthesis. This inhibition was maximal for PG F2 alpha concentrations around 100 pg/ml whereas distinctly higher or lower concentrations were without effect. At the concentration of 100 pg/ml, PG F2 alpha partially inhibited the LH induced cAMP accumulation. These results demonstrate an "in vitro" action of PG F2 alpha on bovine luteal cells. They indicate that the luteolytic action of PG F2 alpha in the bovine species could involve, as already suggested for the rat, both an inhibition of the LH induced synthesis of cAMP and an inhibition of the action of cAMP.  相似文献   

9.
A collagenase dispersed cell suspension from PMSG-hCG primed immature rats responded to exogenously added hCG, cholera enteroxin, prolactin, and 8-Bromocyclic-AMP with increase in progesterone production in a dose dependent manner, and this stimulation was augmented by the plasma lipoprotein fractions hHDL and hLDL. The responsiveness to low doses of prolactin was not apparent when lipoprotein fractions were not included in the assay mixture. When the incubation mixture contained either LDL or HDL, the stimulatory effect of prolactin on progesterone production was evident at 5 and 10 micrograms prolactin/ml of the incubation mixture. Progesterone production, both basal and hormone stimulated, was maximum on day 7 of pseudopregnancy. Although the extent of hCG and prolactin stimulation of progesterone production and its potentiation by lipoprotein fractions was observed to be higher on days 3 and 5 than that seen on day 7, the net amount of progesterone produced was highest on day 7. The basal as well as hormone and lipoprotein stimulated progesterone production started to decline after day 7, reaching a nadir on day 14. These experiments show that prolactin is effective in stimulating progesterone production by rat luteal cells in vitro and that lipoprotein fractions, LDL and HDL further potentiate this response. This study further suggests that it is important to include LDL or HDL as a source of cholesterol for in vitro experiments in which the steroidogenic response of luteal cells to exogenous stimuli is tested.  相似文献   

10.
11.
Biogenic amines were administered using osmotic pumps placed subcutaneously in the neck region of regularly cycling, non-lactating dairy cows on Days 9-11 (oestrus = Day 0) of the oestrous cycle. Blood samples were collected using indwelling jugular catheters and the plasma progesterone concentrations were measured. Samples were collected at 4-h intervals for the first 12 h of treatment and thereafter at 12-h intervals for the remainder of the 72-h treatment period. After administration of various doses of noradrenaline, adrenaline and serotonin (0.5-2.0 micrograms/kg/h) significant elevation of plasma progesterone was achieved at a dosage of 2.0 micrograms/kg/h (P less than 0.01). The response to adrenaline was greater than that observed for noradrenaline and serotonin (P less than 0.05). Within-treatment comparison to pretreatment samples showed plasma progesterone concentrations to increase within 4 h after the administration of noradrenaline, adrenaline and serotonin (P less than 0.05) and this enhancement was maintained throughout the treatment period (P less than 0.05). The elevation in plasma progesterone concentrations induced by noradrenaline, adrenaline and serotonin was independent of changes in circulating concentrations of luteinizing hormone. These results support a physiological role for endogenous biogenic amines in the control of bovine luteal progesterone production.  相似文献   

12.
Corpora lutea (CL) were collected from Holstein heifers on Days 5, 10, 15 and 18 (5/day) of the estrous cycle. Dispersed luteal cell preparations were made and 10(6) viable luteal cells were incubated with bovine luteinizing hormone (LH) and different amounts of arachidonic acid in the presence and absence of the prostaglandin (PG) synthetase inhibitor indomethacin. The concentrations of progesterone, PGF2 alpha and 6-keto-PGF1 alpha, the stable inactive metabolite of prostacyclin (PGI2), were measured. Day 5 CL had the greatest initial content of 6-keto-PGF1 alpha (1.01 +/- 0.16 ng/10(6) cells), and synthesized more 6-keto-PGF1 alpha (2.55 +/- 0.43) than CL collected on Days 10 (0.57 +/- 0.11), 15 (0.08 +/- 0.05) and 18 (0.19 +/- 0.03) during a 2-h incubation period. Arachidonic acid stimulated the production of 6-keto-PGF1 alpha by Days 10, 15 and 18 luteal tissue. PGF2 alpha was produced at a greater rate on Day 5 (0.69 +/- 0.17 ng/10(6) cells) than on Days 10 (0.06 +/- 0.01), 15 (0.04 +/- 0.02) and 18 (0.08 +/- 0.01). Arachidonic acid stimulated and indomethacin inhibited the production of PGF2 alpha, in most cases. The initial content of 6-keto-PGF1 alpha was higher than that of PGF2 alpha on all days of the cycle and more 6-keto-PGF1 alpha was synthesized in response to arachidonic acid addition. The ratio of 6-keto-PGF1 alpha content to PGF2 alpha content was 4.39, 2.30, 1.25 and 1.13 on Days 5, 10, 15 and 18, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Highly purified preparations of small and large bovine luteal cells were utilized to examine the effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2) and I2 (PGI2) analog on progesterone production. Corpora lutea were obtained from Holstein heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. Progesterone accumulation was determined in 1 x 10(5) small and 5 x 10(3) large cells after 2 and 4 h incubations respectively. Progesterone synthesis was increased (p less than 0.05) in the small cells by the increasing levels of PGF2 alpha, PGE2, carba-PGI2 and LH. PGF2 alpha, but not PGE2 or carba-PGI2 increased (p less than 0.05) LH-stimulated progesterone production. There was no interaction of various combinations of prostaglandins on progesterone production in the small cells. In the large cells, PGF2 alpha had no effect on basal progesterone production. However, it inhibited LH-stimulated progesterone synthesis. In contrast, PGE2 and carba-PGI2 stimulated (p less than 0.05) basal progesterone production in the large cells. In the presence of LH, high levels of carba-PGI2 inhibited (p less than 0.05) progesterone synthesis. The PGE2 and PGI2-stimulated progesterone production in the large luteal cells was also inhibited in the presence of PGF2 alpha. These data suggest all of the prostaglandins used exert a luteotropic action in the small cells. In the large cells only PGE2 and carba-PGI2 are luteotropic, while PGF2 alpha exerts a luteolytic action. The effects of the prostaglandins in the small and large luteal cells suggest that their receptors are present in both cell types.  相似文献   

14.
Feeding conjugated linoleic acids (CLA) improves reproductive performance in dairy cows; however, the molecular mechanisms by which CLA improves reproduction are not understood. The effect of the CLA isomers, trans‐10, cis‐12 CLA and cis‐9, trans‐11 CLA on synthesis of progesterone, PGE2, and PGF, in bovine luteal cells was determined in this study. Luteal cells from three cows were cultured in medium containing 0 or 0.1 µM of trans‐10, cis‐12 CLA and cis‐9, trans‐11 CLA in varying ratios in the presence and absence of 1 µM of forskolin. Prostaglandin and progesterone concentrations were not altered by CLA isomer and ratio. Luteal cells cultured in the presence of CLA had lower PGF concentrations (62.6 ± 13.4 pg/ml vs. 55.7 ± 12.2 pg/ml; P = 0.005) and, in the absence of forskolin, lower PGE2 concentrations (65.3 ± 15.1 pg/ml vs. 32.4 ± 14.1 pg/ml; P = 0.002) in culture media, while progesterone concentrations were not altered (P = 0.63). Relative steady‐state mRNA amounts of COX‐2 (1.7‐fold decrease; P = 0.002), PGE synthase (1.5‐fold decrease; P = 0.03) and 3β‐hydroxysteroid dehydrogenase (1.6‐fold decrease; P = 0.0003) were lower in CLA‐treated cultures, but CLA did not significantly alter mRNA amounts of PGE2 9‐keto‐reductase, StAR, and cytochrome P450 side chain cleavage enzyme. In conclusion, a potential mechanism exists by which trans‐10, cis‐12 CLA and cis‐9, trans‐11 CLA may improve reproductive performance in dairy cows, by suppressing PGF synthesis in luteal cells via attenuation of COX‐2 gene expression. Mol. Reprod. Dev. 78:328–336, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
Prostaglandin F2 alpha (PGF2 alpha) inhibits lipoprotein-stimulated progesterone production by bovine luteal cells in vitro and the objective of this study was to localize the site of action of PGF2 alpha. Cultured bovine luteal cells were treated with PGF2 alpha for seven days, and then with either lipoproteins or 25-hydroxycholesterol in the presence of aminoglutethimide (which inhibits cholesterol side-chain cleavage) for the final 48 h. The effects of PGF2 alpha on progesterone production, cellular cholesterol content, mitochondrial cholesterol content and cholesterol side-chain cleavage activity were determined. As expected, PGF2 alpha inhibited (P less than 0.05) lipoprotein-stimulated progesterone production. However, PGF2 alpha did not inhibit low-density lipoprotein-stimulated, or high density lipoprotein-stimulated, increases in cellular cholesterol (P less than 0.05) or inhibit lipoprotein-induced increases in mitochondrial cholesterol content (P less than 0.05). Additionally, cholesterol content of mitochondria increased (P less than 0.05) in the presence of PGF2 alpha alone. To determine if the PGF2 alpha-induced inhibition of steroidogenesis occurred at, or after, the side-chain cleavage reaction, we treated cells with the readily diffusable sterol, 25-hydroxycholesterol. Prostaglandin F2 alpha did not inhibit 25-hydroxycholesterol-stimulated progesterone production (P less than 0.05). Prostaglandin F2 alpha may therefore exert its luteolytic effect at a site after cholesterol transport to the mitochondria but before cholesterol side-chain cleavage.  相似文献   

16.
The present study examines the effects of prostaglandin F2 alpha (PGF2 alpha) on basal and agonist-stimulated progesterone (P4) production utilizing long-term, serum-free cultures of bovine luteal cells. During the first 24 h of culture, PGF2 alpha had no significant effect on P4 production, and was unable to inhibit either luteinizing hormone (LH)- or dibutyryl cAMP (dbcAMP)-stimulated increases in P4. Treatment with PGF2 alpha on Day 1 produced a moderate, nonsignificant (P greater than 0.05) inhibition of cholera toxin (CT)- and forskolin (FKN)-stimulated P4 synthesis. Beyond Day 1 of culture (Days 3-11), PGF2 alpha continued to have no significant effect on basal P4 production, but suppressed all stimulatory effects of LH, dbcAMP, CT and FKN. Treatment with indomethacin inhibited prostaglandin synthesis by the cultured cells and also elevated levels of P4 from Days 3 to 11 of culture. Concurrent treatment with PGF2 alpha suppressed the steroidogenic effect of indomethacin. From these studies it was concluded that in cultured bovine luteal cells, PGF2 alpha does not affect basal P4 production, but is able to inhibit agonist-stimulated P4 production at a site beyond the accumulation of cAMP. This inhibitory effect is not apparent during the first 24 h of culture, but appears after Day 1 and persists throughout the remaining 10 days of the culture period.  相似文献   

17.
Bovine luteal cells can utilize low density lipoprotein (LDL) or high density lipoprotein (HDL) as a source of cholesterol for steroidogenesis, and administration of PGF-2 alpha in vitro suppresses lipoprotein utilization. The objective of this study was to examine the mechanism by which PGF-2 alpha exerts this effect. Cultured bovine luteal cells received 0.25 microCi[14C]acetate/ml, to assess rates of de-novo sterol and steroid synthesis, with or without lipoproteins. Both LDL and HDL enhanced progesterone production (P less than 0.01), but caused a significant reduction in the amount of radioactivity in the cholesterol fraction. PGF-2 alpha treatment inhibited the increase in lipoprotein-induced progesterone synthesis (P less than 0.01), but did not prevent the reduction in de-novo cholesterol synthesis brought about by LDL or HDL. PGF-2 alpha alone reduced cholesterol synthesis (P less than 0.01), but it was not as effective as either LDL or HDL. Both lipoproteins and PGF-2 alpha also decreased the amount of radioactivity in the progesterone fraction (P less than 0.01), and the effect of PGF-2 alpha was similar to that of the lipoproteins. It is concluded that lipoproteins can enhance progesterone production and also suppress de-novo cholesterol synthesis in bovine luteal cells, but only the former effect of lipoproteins is inhibited by PGF-2 alpha. Therefore, it is suggested that PGF-2 alpha allows entry of lipoprotein cholesterol into the cell, but prevents utilization for steroidogenesis. In addition, PGF-2 alpha alone can suppress cholesterol synthesis, as well as decrease conversion of cholesterol to progesterone.  相似文献   

18.
The addition of acetylcholine or histamine (10(-7) to 10(-4) M), gamma-aminobutyric acid, a dopamine agonist, and melatonin (10(-7) to 10(-5) M) did not alter basal or LH-stimulated progesterone production (P greater than 0.05). The addition of the specific beta 2-adrenergic agonist terbutaline and salbutamol did not significantly elevate progesterone production. Treatment of luteal cells with serotonin (5-HT), 10(-6) to 10(-4) M, increased the production of progesterone (P less than 0.05). This stimulated production was inhibited by the addition of mianserin (10(-5) M, a 5-HT antagonist; P less than 0.05). Isoproterenol (10(-7) to 10(-4) M) also resulted in significant increases in progesterone production (P less than 0.05). The combined treatments of 5-HT + LH, isoproterenol + LH, or isoproterenol + 5-HT did not result in a further increase in progesterone above that observed in response to LH or isoproterenol alone (P greater than 0.05). The isoproterenol-induced progesterone production could not be blocked by butoxamine (10(-5) M, a beta 2-antagonist), or practolol (10(-5) M, a beta 1-antagonist), but was inhibited by propranolol (10(-5) M, a general beta-antagonist; P less than 0.05). The response to isoproterenol was unaffected by mianserin (10(-5) M). These results demonstrate a possible role for 5-HT in the regulation of steroidogenesis by the corpus luteum of the cow. Furthermore, these results suggest that serotonin-induced progesterone production is a receptor-mediated event.  相似文献   

19.
Estrogens and androgens are steroids that act as reproductive hormones in vertebrates. These compounds have also been detected in reef-building corals and other invertebrates, where they are hypothesized to act as bioregulatory molecules. Experiments were conducted using labeled steroid substrates to evaluate metabolism of estrogens and androgens by coral homogenates. GC-MS analysis of 13C-labeled steroids showed that Montipora capitata coral homogenates or fragments could convert estradiol to estrone and testosterone to androstenedione and androstanedione, evidence that M. capitata contains 17beta-hydroxysteroid dehydrogenase and 5alpha-reductase. When homogenates from three coral species and symbiotic dinoflagellates (zooxanthellae) were incubated with tritiated steroid substrates, metabolites separated by thin-layer chromatography confirmed that 17beta-hydroxysteroid dehydrogenase activity occurred in all species tested. NADP+ was the preferred cofactor in dehydrogenation reactions with coral homogenates. Reduction of estrone and androstenedione occurred at lower rates and aromatization of androgens was not observed. It is unclear whether estrogens detected previously in coral tissues are produced endogenously or sequestered in coral tissue from dietary or environmental sources. Previous studies have demonstrated that corals can take up estrogens from the water column overlying coral reefs. Considered in total, these observations suggest corals could alter the concentration or form of steroids available to reef organisms.  相似文献   

20.
Elevated activity of 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMG-CoA reductase) was observed in the rabbit ovary and corpus luteum during pregnancy. Based on this study, it was proposed that de novo cholesterol synthesis rather than the uptake of exogenous plasma cholesterol (lipoproteins) was of primary importance in providing steroid substrate for progesterone synthesis by the rabbit luteal cell. Using a perifusion system, the present study challenges this hypothesis by demonstrating that both low- and high-density lipoproteins (at protein concentrations of 100 micrograms/ml and 50 micrograms/ml, respectively) were able to acutely stimulate progesterone production by dissociated rabbit luteal cells. The increase in progesterone synthesis was due to increased cholesterol substrate and not to protein-enhanced progesterone release. The ability of luteal cells to respond to lipoproteins was dependent on both dose- and sequence of treatment, with high-density lipoprotein (HDL) being unable to stimulate progesterone production if preceded by perifusion with low-density lipoprotein (LDL) or HDL. In addition, 17 beta-estradiol appeared to regulate lipoprotein utilization by attenuating the LDL response after 1 h of perifusion. We conclude that lipoproteins may provide cholesterol substrate for progesterone biosynthesis in vitro and that 17 beta-estradiol, in addition to maintaining progesterone production by luteal cells, may also regulate lipoprotein utilization. Thus, maintenance of steady progesterone secretion in response to estradiol supercedes that of LDL-stimulated progesterone secretion by rabbit luteal cells in vitro. This study suggests an interaction between estrogen and lipoproteins that may prove physiologically important in regulating progesterone production by rabbit luteal cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号