首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We expressed the allogenic class II MHC antigen and B7.1 (CD80) co-stimulatory molecule in A20 beta-lymphoma cells in order to test their efficacy as immuno-stimulating adjuvant agents in inducing tumor-specific immunity. The transduction of the allogenic I-Ab alpha and beta chain genes into A20 cell resulted in a surface expression of the allogenic class II MHC molecules. The expression of the allogenic class II MHC antigen (I-Ab) in A20 cells enhanced the proliferation of T cells in a mixed lymphocyte tumor culture and in vitro cytotoxic T lymphocyte (CTL) generation against parental cells. The B7.1 gene, which is known to be a potent co-stimulatory molecule, was also transduced and expressed in A20 cells, either alone or in combination with I-Ab. The B7.1 transduction alone leads to a similar in vitro immune enhancing effect as I-Ab. When both the I-Ab and B7.1 genes were transduced, the in vitro immunostimulating capacity was further enhanced. Finally, we also tested the A20 cells that were transduced with I-Ab and/or B7.1 for their efficacy as preventive tumor vaccines in vivo. The results indicate that the A20 cells that express both the I-Ab and B7.1 have more potent vaccinating potential, compared to the cells that express only one of the molecules.  相似文献   

2.
Although class II antigens encoded by genes in the major histocompatibility complex (MHC) are important as recognition structures for immunoregulatory cell interactions, the precise functional role of these molecules in the biological responses of B lymphocytes is unknown. In the studies described here, we have examined the effects of six monoclonal antibodies reactive with human class II MHC antigens on B cell activation and proliferation. Peripheral blood IgM+ B cells purified by fluorescence-activated cell sorter (FACS) techniques were stimulated with anti-mu antibodies, protein A-bearing Staphylococcus aureus (SAC), or in T cell-dependent activation cultures. The B cell proliferative responses induced by these stimuli were inhibited 68 to 90% by low concentrations (1 to 5 micrograms/ml) of antibodies reactive with class II MHC antigens. Antibodies specific for DR and DQ antigens were both effective inhibitors of B cell proliferation. This inhibition was not due to the binding of antibody to B cell Fc-IgG receptors, because IgM and IgG anti-class II antibodies were equally potent as inhibitors. When responses of B cells fractionated on the basis of cell size by forward angle light scatter were analyzed, anti-DR and anti-DQ antibodies inhibited the proliferation of small, resting IgM+ cells induced by T-independent as well as T-dependent stimuli. Activation-dependent increases in B cell size and RNA synthesis were similarly inhibited. In contrast, the responses of large B cells (that had been preactivated in vivo) to T cell-derived B cell growth factors were not affected by anti-class II antibodies. These data suggest that class II MHC molecules do not serve merely as cellular interaction structures but also directly participate in early events of the B cell activation cascade that precede cell enlargement or increased RNA synthesis. After activation and expression of receptors for growth factors, however, B cell class II MHC antigens no longer mediate signals required for mitogenesis.  相似文献   

3.
4.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

5.
The capacity of peripheral blood monocytes and B lymphocytes to support staphylococcal protein A (SpA)-induced proliferation of autologous and allogeneic T cells, as well as the role of major histocompatibility complex (MHC) class I and II molecules in this activation process, were investigated. Highly purified peripheral T lymphocytes did not proliferate in response to SpA, but their response was reconstituted by both irradiated (or mitomycin C-treated) monocytes and B lymphocytes. The effect of B cells on the SpA-induced T-cell response could not be explained by a contamination of residual accessory cells because long-term continuous B-cell lines restored SpA-induced T-cell DNA synthesis as effectively as did monocytes. Support of SpA responsiveness by B cells could not be accounted for by polyclonal binding of SpA to cell surface immunoglobulins, since the ability of SpA-unreactive and SpA-reactive B cells was comparable. The cells from two human leukemic lines--K562 and Raji--showed the same ability in supporting the pokeweed mitogen-induced T-cell response, but the class II-positive Raji cells were much more effective than class II-negative K562 cells in restoring the T-cell responsiveness to SpA. Monoclonal antibodies specific for monomorphic determinants of MHC class II antigens, as well as their F(ab')2 fragments, consistently inhibited the SpA-induced proliferative response, whereas antibodies specific for MHC class I antigens were without effect. The antibodies specific for class II antigens appeared to act at the level of accessory cell, since pretreatment with these antibodies inhibited the ability of SpA-pulsed monocytes or Raji cells to present SpA to autologous or allogeneic T lymphocytes, respectively. These data indicate that either monocytes or normal and lymphoblastoid B cells can act as accessory cells for the proliferative response of human T cells to soluble SpA and that monomorphic determinants of MHC class II molecules play an important role in this activation process.  相似文献   

6.
CD23, a low-affinity IgE receptor, is a type II transmembrane protein having a C-type lectin domain and it associates noncovalently with MHC class II on B cells. The results of our immunoprecipitation analysis suggest that CD23 co-exists with at least two additional molecules, surface immunoglobulin (sIg) and CD81 (and/or CD9), on the cell surface of L-KT9 cells (an Epstein-Barr virus (EBV)-transformed human B cell line). When both CD23 and sIg molecules were stimulated simultaneously by the corresponding antibodies, a large increase in CD81 in the immunoprecipitation was observed as compared with the case of stimulation by only one antibody. Simultaneous stimulation by anti-CD23 and anti-Ig may mimic the situation of B cells stimulated by an antigen/IgE complex. In addition, a large increase in MHC class II in the immunoprecipitation was also observed by cross-linking of CD23 with anti-CD23 and its second antibody as compared with the case of stimulation by anti-CD23 alone. The cross-linking of CD23 with anti-CD23 and its antibody may mimic the situation of B cells stimulated by an IgE/antigen/IgE complex. Therefore, the complex formation among CD23, sIg, MHC class II, and CD81 on the cell surface of L-KT9 cells by the antigen/IgE or IgE/antigen/IgE complex is most likely to be closely related to B cell regulatory events by signaling through sIg or MHC class II. Tetraspanins such as CD81 and CD9 are thought to be involved in the formation and the preservation of various different membrane complexes consisting of several functional proteins.  相似文献   

7.
Human peripheral blood lymphocytes heated at 45 degrees C for 1 hr were found to continue to express all the serologically detected class II MHC antigens (HLA DR, MT, MB) but not to stimulate proliferation in primary or secondary MLR. Such cells did, however, stimulate the formation of potent suppressor cells. Three additional stimulator cell models for the presentation of either class I antigen only (purified platelets and purified T cells) or class I antigen plus nonimmunogenic class II antigen (D/DR-compatible cells) gave identical results. Supernatants from cultures stimulated with any of these cell types had significantly reduced IL 2 activity when compared to control MLR. The suppressor cells generated in such cultures were not restricted to the class I or class II MHC antigen of the original stimulator. These data are interpreted to mean that 1) the class II epitopes detected by alloantisera and the epitopes that serve as lymphocyte-activating determinants are metabolically or conformationally distinct, and 2) that presentation of class I MHC antigen alone or in conjunction with nonimmunogenic class II MHC antigen preferentially stimulates the formation of suppressor cells. It is hypothesized that the latter may be an additional mechanism that contributes to the efficacy of matching for class II determinants in human renal transplantation.  相似文献   

8.
Two interleukin-2 (IL-2)-dependent cytotoxic T-cell clones were obtained by limiting dilution from a lymphocyte culture stimulated in vitro with the autologous Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) in the presence of fetal calf serum (FCS). Both clones uniformly had a T3+, T4+, Dr+ phenotype and lysed autologous B blasts, the autologous LCL, and allogeneic B cell lines sharing major histocompatibility complex (MHC) class II antigens. The cytotoxic function was triggered by FCS-derived components. There was no killing if the sensitive targets were cultured in serum-free medium or in medium supplemented with human serum. Sensitivity to lysis could be restored by exposing the targets to FCS for at least 6 hr at 37 degrees C. Monoclonal antibodies directed to T-cell-specific surface antigens and MHC class II antigens inhibited lysis with different efficiencies depending on the target cell origin. Killing of Burkitt's lymphoma (BL)-derived cell lines was blocked more easily than killing of LCLs. LCLs but not BL lines induced proliferation of the T-cell clones in the absence of exogenous IL-2. The differences were not related to quantitative variations in the expression of MHC class II antigens, indicating that BL lines differ from LCLs in other cell membrane properties that may influence antigen presentation. The results suggest that the affinity of effector/target binding, which is probably influenced by the concentration of antigenic determinants expressed on the target cell membrane, determines whether proliferative responses or cytotoxicity are induced in the antigen-recognizing T cells.  相似文献   

9.
After immunization of B6 mice with the syngeneic retrovirus-induced T cell leukemia/lymphoma FBL-3, two major tumor-specific proliferative T cell clonotypes were derived. T cell clones derived from long-term lines propagated by in vitro culture with irradiated tumor cells and syngeneic spleen cells were exclusively of the Lyt-2+ phenotype. Such clones were cytolytic, retained their proliferative phenotype indefinitely when expanded by repeated cycles of reactivation and rest, and recognized a tumor-specific cell surface antigen in association with class I MHC molecules. This tumor cell antigen was not present on nontransformed virus-infected cells. Class II MHC-restricted MT4+ clones specific for the viral antigen gp70 were derived from lymph node T cells of FBL-3 tumor-immune mice only by in vitro culture with purified Friend virus in the presence of syngeneic splenic APC. Once derived, however, such clones could be stimulated in the presence of FBL-3 tumor cells and syngeneic spleen cells, demonstrating the reprocessing of tumor-derived gp70 antigen by APC in the spleen cell population. In contrast, no reprocessing of the tumor cell surface antigen by splenic APC for presentation to the class I MHC-restricted T cell clones could be demonstrated. Evidence is presented that FBL-3 T leukemia/lymphoma cells function as APC for Lyt-2+ class I MHC-restricted clones, and that no concomitant recognition of Ia molecules is required to activate these clones. Both Lyt-2+ and MT4+ clones were induced to proliferate in the presence of exogenous IL2 alone, but this stimulus failed to result in significant release of immune interferon. In contrast, antigen stimulation of both clones resulted in proliferation as well as significant immune interferon release. Immune interferon production is not required for the generation of MHC-restricted cell-mediated cytolytic function.  相似文献   

10.
To find out whether immunoglobulins are able to recognize foreign antigens in the context of syngeneic MHC determinants, an effort was made to trigger the production of MHC-restricted antibodies by syngeneic Sendai virus (SV)-infected cells using the spleen-fragment culture technique. Antibodies were found that mimicked MHC-restricted antibodies by recognizing MHC + SV better than MHC alone. However, the binding was not specific for SV and also occurred on mitogen-stimulated (SV) or influenza virus-infected cells. We describe the production of H-2 class I-specific lymphocytotoxic antibodies by primary B cells responding to syngeneic SV-infected cells. No viral-specific, H-2-restricted antibodies were found.  相似文献   

11.
S Carson 《Nucleic acids research》1991,19(18):5007-5014
The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus.  相似文献   

12.
Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/− glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo response to a cancer related tumor antigen, Balb/c or B6.Cg(CB)-Tg(HLA-A/H2-D)2Enge/J (HLA-A2 transgenic) mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-γ release, and antibody induction. GalNAc-glycosylation promoted presentation of OVA-MUC1 fusion peptides by MHC class II molecules and the MUC1 antigen elicited specific Ab production and T cell proliferation in both Balb/c and HLA-A2 transgenic mice. In contrast, GalNAc-glycosylation inhibited the presentation of OVA-MUC1 fusion peptides by MHC class I and abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells.  相似文献   

13.
Hepatitis B virus core antigen (HBcAg) plays a critical role in terminating acute Hepatitis B virus infection and may be used as a potential vaccine candidate. The cell surface major histocompatibility complex (MHC) class 1 molecules are thought to be involved in the presentation of HBcAg. Surface MHC class 1 HLA A2 heavy chain (HC) and trimeric molecules were characterized on transfected Hela cells used as antigen presenting cells (APC) for the presentation of HBcAg. The results show that antibodies against HC HLA A2 and trimeric HLA-A2 molecules resulted in increased activation of HBcAg 18-27 minimal peptide specific cytotoxic T lymphocytes (CTLs), while the addition of exogenous beta2-microglobulin decreased the activation of HBcAg specific CTLs. Further, specific CD8+ T cells were activated only when Hela cells as APCs were primed with HBcAg (peptide, soluble or embedded on virosomes) at pH 6.5.  相似文献   

14.
Human cytotoxic T cell clones were generated against autologous EBV-transformed B lymphocytes. Whereas the majority of the clones expressed the T8 surface glycoproteins and showed a specificity for class I MHC gene products on the target cell, a minority expressed the T4 surface glycoprotein and demonstrated a class II specificity. Monoclonal antibodies to T4 and T8 inhibited cytotoxic effector function of reactive clones in a fashion analogous to their effect on alloreactive CTL clones. Each autoreactive T cell clone was cytotoxic for EBV-transformed B lymphocytes but not pokeweed mitogen-activated or resting autologous lymphocytes, suggesting a dual specificity for an MHC gene product as well as an antigen induced and/or encoded by virus. Taken together, the present findings provide further support for the notion that T4 and T8 serve as associative recognition elements on T lymphocytes for MHC gene products.  相似文献   

15.
The Epstein-Barr virus (EBV)-coded nuclear antigen (EBNA) 1, a latent cycle protein endogenously expressed in EBV-transformed B lymphoblastoid cell lines (LCLs), is reported to be processed for CD4(+) T cell recognition by an intracellular route involving antigen delivery to the endosome/lyosome (MHC class II loading) compartment via macroautophagy. In contrast we find that, in the same cell type, two other virus-coded nuclear proteins of the latent cycle, EBNA2 and EBNA3C, are processed by a different route that is unaffected by autophagy inhibition. This involves the intercellular transfer of an antigenic moiety, detectable in cell-free culture supernatants, and its uptake and processing as exogenous antigen by neighboring cells. The process is cumulative and leads over several days of LCL culture to high levels of CD4+ T cell epitope display. The presentation of certain EBV lytic cycle proteins to CD4+ T cells has also recently been found to involve a similar intercellular antigen transfer. It becomes important to know why, even in the same cell type, some antigens but not others appear to access the MHC class II presentation pathway by autophagy.  相似文献   

16.
Animals were identified from two sire lines as being homozygous for the class I bovine lymphocyte antigen (BoLA-A) w23. These animals were also shown to be homozygous for class II antigens (BoLA-D) which, however, differed between the two sire lines. Lymphocytes from these animals were then used either as stimulator cells in one-way mixed lymphocyte reactions (MLR) with all animals in the herd carrying the w23 antigen or as antigen presenting cells to bovine T4+ cell blasts. It was shown that, within each sire line, the genes encoding the MHC class I and class II antigens were closely linked. There were no detected recombinations between the MHC class I and class II regions nor within the BoLA-D region responsible for mixed lymphocyte reactivity. MLR typing of MHC class II antigens correlated with the results from T-lymphocyte proliferation studies. Cells from these cattle, which are homozygous at the class I and II MHC loci but differ in the class II antigen expressed, could be used to type the BoLA-D of other cattle.  相似文献   

17.
18.
The human immunodeficiency virus (HIV) and the closely related simian immunodeficiency virus (SIV) induce profound immune dysfunction in primate species. The present studies show that cell populations infected in vitro with SIV exhibit increases in major histocompatibility complex (MHC) class II antigen expression. Cell lines chronically infected with both the monkey and human viruses express substantially more MHC class II but not more lineage-restricted or activation antigens on their membranes than do uninfected cell lines. Furthermore, 2'-deoxy-5-iodouridine increased MHC class II antigen expression on SIV-infected cell lines in parallel with increased expression of viral antigens. MHC class II induction does not appear to be mediated through the production of a soluble factor, such as gamma interferon, by SIV-infected cells. Interestingly, studies of the kinetics of antigen expression by cell lines after SIV infection indicate that the induction of MHC class II structures is a late event. Immunoelectron microscopy revealed that MHC class II antigen is expressed not only on the surfaces of the SIV-infected cells but also on the envelope of virus particles derived from those cells. MHC antigen expression on virus-infected cells and the expression of those determinants by the virus may play a role in the pathogenesis of acquired immunodeficiency syndrome and the autoimmune abnormalities observed in HIV-infected individuals.  相似文献   

19.
It is reported here that most cytotoxic T lymphocytes (CTL), which recognize class I major histocompatibility complex (MHC) loci, express the T cell differentiation antigen T8. However, a minority of T8+ CTL clones was found to recognize class II MHC antigens. To test the hypothesis that T8 is involved only in T cell recognition of class I MHC antigens, we studied the role of T8 in the cytotoxic activity of class II MHC-specific CTL. Monoclonal antibodies specific for T8 blocked the activity of most class I MHC-specific CTL clones but did not affect the activity of class II MHC-specific CTL clones. Moreover, a mild trypsin treatment of the clones, which removed and T8 determinant, affected the activity of class I MHC but not that of class II MHC-specific CTL clones. These findings indicate that the class II-specific MHC CTL clones described here did not require T8 for their cytolytic activity. The activity of one T8+ class I MHC-specific (HLA-B27) CTL clone (HG-61) against the B cell line JY, which was used to raise this CTL clone, was not blocked by trypsin treatment of this clone. However, the activity of CTL clone HG-61 against target cells different from JY but carrying the appropriate HLA specificity was blocked by anti-T8 antibodies and trypsin treatment. The implications of these findings for the hypothesis that T8 is involved only in the activity of CTL with a relatively low avidity for class I MHC antigens are discussed.  相似文献   

20.
Coxsackievirus B3 (CVB3) infection induces myocardial inflammation and myocyte necrosis in some, but not all, strains of mice. C57BL/6 mice, which inherently lack major histocompatibility complex (MHC) class II IE antigen, develop minimal cardiac lesions despite high levels of virus in the heart. The present experiments evaluate the relative roles of class II IA and IE expression on myocarditis susceptibility in four transgenic C57BL/6 mouse strains differing in MHC class II antigen expression. Animals lacking MHC class II IE antigen (C57BL/6 [IA+ IE-] and ABo [IA- IE-]) developed minimal cardiac lesions subsequent to infection despite high concentrations of virus in the heart. In contrast, strains expressing IE (ABo Ealpha [IA- IE+] and Bl.Tg.Ealpha [IA+ IE+]) had substantial cardiac injury. Myocarditis susceptibility correlated to a Th1 (gamma interferon-positive) cell response in the spleen, while disease resistance correlated to a preferential Th2 (interleukin-4-positive) phenotype. Vgamma/Vdelta analysis indicates that distinct subpopulations of gamma delta+ T cells are activated after CVB3 infection of C57BL/6 and Bl.Tg.Ealpha mice. Depletion of gamma delta+ T cells abrogated myocarditis susceptibility in IE+ animals and resulted in a Th1-->Th2 phenotype shift. These studies indicate that the MHC class II antigen haplotype controls myocarditis susceptibility, that this control is most likely mediated through the type of gamma delta T cells activated during CVB3 infection, and finally that different subpopulations of gamma delta+ T cells may either promote or inhibit Th1 cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号