首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.

Background  

SATB1 is a nuclear protein that has been recently reported to be a 'genome organizer' which delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. In this study, the level of mRNA expression of SATB1 and SATB2 were assessed in normal and malignant breast tissue in a cohort of women with breast cancer and correlated to conventional clinico-pathological parameters.  相似文献   

7.
8.
To analyze the regulation of PRL gene expression by thyroid hormone (T3), fusion gene constructs containing various lengths of the rat PRL gene 5'-flanking sequence linked to the bacterial chloramphenicol acetyltransferase (CAT) gene were transfected into the GH3 cell line. Thyroid hormone had no effect on basal or cAMP-stimulated CAT expression in constructs containing more than 1.7 kilobasepairs of the 5'-sequence. However, deletion to 1.5 or 0.6 kilobasepairs resulted in an inhibition of both basal and cAMP-stimulated expression by T3. A construct containing the proximal enhancer region (positions -292 to -38 basepairs) linked to the herpes simplex thymidine kinase promoter (TK) and the CAT reporter gene also responded to T3 with inhibition of basal and cAMP-induced CAT expression. The distal enhancer region (positions -1714 to -1495) linked to thymidine kinase promoter CAT responded to T3 with a stimulation of CAT expression, and the response was additive with the stimulatory response to cAMP. Deletion analysis of the distal enhancer region revealed that the sequence between positions -1530 and -1565 was required for the stimulatory response to T3. The stimulatory response to T3 was additive with the response to estradiol, suggesting distinct elements, but deletion to position -1565 abolished the response to estradiol and permitted an inhibitory response to T3. Mutation of the estrogen response element prevents the response to estradiol, but only blunted the response to T3. Mutation of the sequence GGTCA at positions -1555 to -1551 resulted in an inhibitory response to T3, implicating this sequence in the stimulatory response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
SATB1在基因表达调控中作用的研究进展   总被引:1,自引:0,他引:1  
李珂  卢健 《生命科学》2005,17(4):315-317
SATB1是一种组织特异性的核基质结合蛋白,参与了染色质高级结构的形成和组织特异性基因的表达调控,对于胸腺细胞的发育和T细胞的成熟起到了尤为重要的作用。虽然已经知道SATB1可以通过与MAR序列结合,以促进染色质重塑,调节组蛋白乙酰化和甲基化水平等多种途径对基因的表达进行调控,但是对于该过程所涉及到的分子机制仍然不是很清楚。本文对SATB1在基因表达调控方面的研究进展作一综述。  相似文献   

12.
Epithelial cell transforming protein 2 (Ect2) is a guanine nucleotide exchange factor (GEF) for Rho GTPases, molecular switches essential for the control of cytokinesis in mammalian cells. Aside from the canonical Dbl homology/pleckstrin homology cassette found in virtually all Dbl family members, Ect2 contains N-terminal tandem BRCT domains. In this study, we address the role of the Ect2 BRCT domains in the regulation of Ect2 activity and cytokinesis. First, we show that the depletion of endogenous Ect2 by small interfering RNA induces multinucleation, suggesting that Ect2 is required for cytokinesis. In addition, we provide evidence that Ect2 normally exists in an inactive conformation, which is at least partially due to an intramolecular interaction between the BRCT domains and the C-terminal domain of Ect2. This intramolecular interaction masks the catalytic domain responsible for guanine nucleotide exchange toward RhoA. Consistent with a role in regulating Ect2 GEF activity, overexpression of an N-terminal Ect2 containing the tandem BRCT domains, but not single BRCT domain or BRCT domain mutant, leads to a failure in cytokinesis. Surprisingly, although ectopically expressed wild-type Ect2 rescues the multinucleation resulting from the depletion of endogenous Ect2, expression of a BRCT mutant of Ect2 failed to restore proper cytokinesis in these cells. Taken together, the results of our study indicate that the tandem BRCT domains of Ect2 play dual roles in the regulation of Ect2. Whereas these domains negatively regulate Ect2 GEF activity in interphase cells, they are also required for the proper function of Ect2 during cytokinesis.  相似文献   

13.
Epidermal growth factor (EGF) and transforming growth factor (TGF)-alpha are potent activators of the ErbB-1 receptor, but, unlike TGF-alpha, EGF is also a weak activator of ErbB-2/ErbB-3 heterodimers. To understand the specificity of EGF-like growth factors for binding to distinct ErbB members, we used EGF/TGF-alpha chimeras to examine the requirements for ErbB-2/ErbB-3 activation. Here we show that in contrast to these two wild-type ligands, distinct EGF/TGF-alpha chimeras are potent activators of ErbB-2/ErbB-3 heterodimers. On the basis of differences in the potency of these various chimeras, specific residues in the linear N-terminal region and the so-called B-loop of these ligands were identified to be involved in interaction with ErbB-2/ErbB-3. A chimera consisting of human EGF sequences with the linear N-terminal region of human TGF-alpha was found to be almost as potent as the natural ligand neuregulin (NRG)-1beta in activating 32D cells expressing ErbB-2/ErbB-3 and human breast cancer cells. Binding studies revealed that this chimera, designated T1E, has high affinity for ErbB-2/ErbB-3 heterodimers, but not for ErbB-3 alone. Subsequent exchange studies revealed that introduction of both His2 and Phe3 into the linear N-terminal region was already sufficient to make EGF a potent activator of ErbB-2/ErbB-3 heterodimers, indicating that these two amino acids contribute positively to this receptor binding. Analysis of the B-loop revealed that Leu26 in EGF facilitates interaction with ErbB-2/ErbB-3 heterodimers, while the equivalent Glu residue in TGF-alpha impairs binding. Since all EGF/TGF-alpha chimeras tested have maintained high binding affinity for ErbB-1, it is concluded that the diversity of the ErbB signaling network is determined by specific amino acids that facilitate binding to one receptor member, in addition to residues that impede binding to other ErbB family members.  相似文献   

14.
15.
Selectable markers enable transgenic plants or cells to be identified after transformation. They can be divided into positive and negative markers conferring a selective advantage or disadvantage, respectively. We present a marker gene, dao1, encoding D-amino acid oxidase (DAAO, EC 1.4.3.3) that can be used for either positive or negative selection, depending on the substrate. DAAO catalyzes the oxidative deamination of a range of D-amino acids. Selection is based on differences in the toxicity of different D-amino acids and their metabolites to plants. Thus, D-alanine and D-serine are toxic to plants, but are metabolized by DAAO into nontoxic products, whereas D-isoleucine and D-valine have low toxicity, but are metabolized by DAAO into the toxic keto acids 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate, respectively. Hence, both positive and negative selection is possible with the same marker gene. The marker has been successfully established in Arabidopsis thaliana, and proven to be versatile, rapidly yielding unambiguous results, and allowing selection immediately after germination.  相似文献   

16.
《Epigenetics》2013,8(4):267-272
The incorporation of variant histone H2A.Z within chromatin is important for proper gene expression and genome stability. H2A.Z is inserted at discrete loci by the Swr1 or Swr1-like remodeling complexes, although very little is known about the nature of the targeting mechanism involved. Replacement of canonical histone H2A for H2A.Z has been shown to modify nucleosome dynamics, although discrepancies still exist in the literature regarding the mechanisms. Recent experiments have shown that H2A.Z can allow nucleosomes to adopt stable translational positions as compared to H2A, which could influence the accessibility to DNA regulatory proteins. This review provides a brief overview of H2A.Z biology and presents hypotheses that could reconcile contradictory reports that are found in the literature regarding the influence of H2A.Z on nucleosome stability.  相似文献   

17.
18.
19.
The tissue-specific expression of transgenes is essential in plant breeding programmes to avoid the fitness costs caused by constitutive expression of a target gene. However, knowledge on the molecular mechanisms of tissue-specific gene expression and practicable tissue-specific promoters is limited. In this study, we identified the cis -acting elements of a tissue-specific promoter from rice, PD54O , and tested the application of original and modified PD54O and its cis -elements in the regulation of gene expression. PD54O is a green tissue-specific promoter. Five novel tissue-specific cis -elements (LPSE1, LPSE2, LPSRE1, LPSRE2, PSE1) were characterized from PD54O . LPSE1 activated gene expression in leaf and young panicle. LPSRE2 suppressed gene expression in leaf, root, young panicle and stem, and PSE1 suppressed gene expression in young panicle and stem. LPSRE1 and LPSE2 had dual roles in the regulation of tissue-specific gene expression; both functioned as activators in leaf, but LPSRE1 acted as a repressor in stem and LPSE2 as a repressor in young panicle and root. Transgenic rice plants carrying cry1Ac encoding Bacillus thuringiensis endotoxin, regulated by PD54O , were resistant to leaf-folders, with no Cry1Ac protein found in endosperm or embryo. A reporter gene regulated by a series of truncated PD54O showed various tissue-specific expression patterns. Different fragments of PD54O fused with the constitutive cauliflower mosaic virus 35S promoter suppressed 35S -regulated gene expression in various tissues. PD54O , truncated PD54O and the tissue-specific cis -elements provide useful tools for the regulation of tissue-specific gene expression in rice breeding programmes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号