首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of liposome-encapsulated annamycin (L-Ann) were investigated in two human breast cancer cell lines, MCF7 and MDA-MB-435. For comparative purposes, doxorubicin (Dx) was used throughout the study. A 4-hour treatment with L-Ann was significantly more active in MDA-MB-435 than in MCF7 cells (IC(50) values of 0.03 and 0.08 microg/ml, respectively), whereas Dx was equally active in the two cell lines (IC(50) 0.12 microg/ml). L-Ann induced an accumulation of cells in G2M phases which was dose-dependent in MDA-MB-435 but not in MCF7 cells. Dx also caused a dose-dependent increase of G2M cell fraction in MDA-MB-435 cells, whereas a G2M cell accumulation was observed only after treatment with the highest Dx concentration in MCF7 cells. G2M phase cell accumulations induced in MCF7 cells by L-Ann or Dx were accompanied by a decrease in cdc2 kinase activity and in cyclin B1 and cdc2 expression. Conversely, in MDA-MB-435 cells exposed to L-Ann or Dx, cdc2 kinase activity, cyclin B1 and cdc2 expression increased in parallel to the increase in the number of cells accumulated in the G2M phase. L-Ann and Dx induced apoptosis in MDA-MB-435 but not in MCF7 cells. In MDA-MB-435 cells exposed to L-Ann or Dx, no change was observed in the expression of bax, but there was a p53-independent increase in p21(waf1) expression. In MCF7 cells, treatment with L-Ann or Dx induced an increase in p53 expression with a consequent transactivation of p21(waf1) and bax. Our results indicate that L-Ann is more cytotoxic than Dx in breast cancer cells and is able to induce apoptosis through p53-independent mechanisms.  相似文献   

2.
Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.  相似文献   

3.
sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.  相似文献   

4.
5.
6.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell proliferation and induce apoptosis in cancer cells. Here we wished to determine whether the PPARgamma ligand induces apoptosis and cell cycle arrest of the MDA-MB-231 cell, an estrogen receptor alpha negative breast cancer cell line. The treatment of MDA-MB-231 cell with PPARgamma ligands was shown to induce inhibition of cell growth in a dose-dependent manner as determined by MTT assay. Cell cycle analysis showed a G1 arrest in MDA-MB-231 cells exposed to troglitazone. An apoptotic effect by troglitazone demonstrated that apoptotic cells elevated by 2.5-fold from the control level at 10 microM, to 3.1-fold at 50 microM and to 3.5-fold at 75 microM. Moreover, troglitazone treatment, applied in a dose-dependent manner, caused a marked decrease in pRb, cyclin D1, cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 expression as well as a significant increase in p21 and p27 expression. These results indicate that troglitazone causes growth inhibition, G1 arrest and apoptotic death of MDA-MB-231 cells.  相似文献   

7.
8.
Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC(50) ranging from 7.74 μg/ml to 12.5 μg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC(50) of 19.24 μg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC(50) did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer.  相似文献   

9.
10.
Here, we investigated the compartment-specific role of cell cycle arrest and senescence in breast cancer tumor growth. For this purpose, we generated a number of hTERT-immortalized senescent fibroblast cell lines overexpressing CDK inhibitors, such as p16(INK4A), p19(ARF) or p21(WAF1/CIP1). Interestingly, all these senescent fibroblast cell lines showed evidence of increased susceptibility toward the induction of autophagy (either at baseline or after starvation), as well as significant mitochondrial dysfunction. Most importantly, these senescent fibroblasts also dramatically promoted tumor growth (up to ~2-fold), without any comparable increases in tumor angiogenesis. Conversely, we generated human breast cancer cells (MDA-MB-231 cells) overexpressing CDK inhibitors, namely p16(INK4A) or p21(WAF1/CIP1). Senescent MDA-MB-231 cells also showed increased expression of markers of cell cycle arrest and autophagy, including β-galactosidase, as predicted. Senescent MDA-MB-231 cells had retarded tumor growth, with up to a near 2-fold reduction in tumor volume. Thus, the effects of CDK inhibitors are compartment-specific and are related to their metabolic effects, which results in the induction of autophagy and mitochondrial dysfunction. Finally, induction of cell cycle arrest with specific inhibitors (PD0332991) or cellular stressors [hydrogen peroxide (H₂O₂) or starvation] indicated that the onset of autophagy and senescence are inextricably linked biological processes. The compartment-specific induction of senescence (and hence autophagy) may be a new therapeutic target that could be exploited for the successful treatment of human breast cancer patients.  相似文献   

11.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

12.
Indole-3-carbinol (I3C) is a promising anticancer dietary compound, which inhibits breast cancer in animal models. The objective of the current study was to characterize I3C-induced cell death in a panel of human breast tumorigenic cells (MCF7, MDA-MB-468, MDA-MB-231 and HBL100) in comparison with normal fibroblasts. Since epithelial cells are protected from cell death by a three-dimensional environment, 3D cell culture (collagen I gel and spheroids) was employed to investigate susceptibility to I3C. Cell viability in the presence of 256 μM I3C, a concentration close to the physiologically achievable range, was in the order fibroblasts = HBL100>MDA-MB-231>MCF7>MDA-MB-468 in monolayer culture. However, 3D culture conditions increased the susceptibility of MCF7 and MDA-MB-468 cancer cells towards I3C. I3C induced cell death in breast cancer MCF7, MDA-MB-468 and MDA-MB–231 cells via the mitochondrial apoptotic pathway. I3C significantly reduced levels of epidermal growth factor receptor (EGFR) in MDA-MB-468 after 6 h and in MDA-MB-231 and HBL100 cells after 30 h. Downregulation of EGFR in MDA-MB468 and MDA-MB-231 cells using an EGFR inhibitor resulted in apoptosis. EGFR modulation using EGF or an EGFR inhibitor markedly influenced viability and response to I3C in MDA-MB-468 cells in 3D conditions. EGFR expression was modulated by 3D conditions. Therefore, I3C-induced EGFR reduction in these cells is likely to be responsible for I3C-induced apoptosis.  相似文献   

13.
BackgroundBreast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH) and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.MethodsThe mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.ResultsMCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.ConclusionMTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.  相似文献   

14.
Curcumin, an active constituent of turmeric, has been shown to possess inhibitory effect of cell proliferation and induction of apoptosis towards a board range of tumors. Cell inhibition activities of curcumin are behaved differently in various cell types. To investigate the mechanism basis for the cell inhibition of curcumin on breast cancer cell lines, we examine curcumin effect on NFκB, cell cycle regulatory proteins and matrix metalloproteinases (MMPs) in two breast cancer cell lines (MDA-MB-231 and BT-483). Cell proliferation was performed by water soluble tetrazolium WST-1 assay. The effect of curcumin's on the activity of matrix metalloproteinase-1, 3, 9 were analyzed by RT-PCR. Cell cycle regulatory protein including cyclin D1, CDK4 and p21 were examined by immunochemistry. The expressions of NFκB in breast cancer cells treated with curcumin were studied by immunochemistry and western blot. The results from WST-1 cell proliferation assay showed that curcumin exhibited the anti-proliferation effect on MDA-MB-231 and BT-483 cells in a time- and dose-dependent manner. In response to the treatment, while, the expression of cyclin D1 had declined in MDA-MB-231 and the expression of CDK4 in BT-483 had declined. MMP1 mRNA expression in BT-483 and MDA-MB-231 had significantly decreased in curcumin treatment group compared with control group. Our finding extrapolates the antitumor activity of curcumin in mediating the breast cancer cell proliferative rate and invasion by down-regulating the NFκB inducing genes.  相似文献   

15.
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.  相似文献   

16.
Epigenetic regulation of gelsolin expression in human breast cancer cells.   总被引:6,自引:0,他引:6  
Gelsolin is a multifunctional, actin-binding protein that is greatly decreased in many transformed cell lines and tumor tissues, including breast cancers. Downregulation of gelsolin RNA occurs in most breast cancers of rats, mice, and humans, but gross mutations of the gelsolin gene have not been found. Here we demonstrate by PCR and RT-PCR analysis that there are no point mutations in putative regulatory regions or the entire coding region of the cytoplasmic isoform of the gelsolin gene in human breast cancer cells (BCC). To determine if epigenetic modification is involved in downregulating gelsolin expression in MDA-MB-231 (MDA231), MCF7, and T47D BCC, we have used Southern blot analysis, 5-azacytidine (5aza) treatment, and trichostatin A (TSA) treatment. Southern blot analysis performed on genomic DNA demonstrated altered CpG methylation within intron 1 in DNA from all BCC compared to normal, mortal human mammary epithelial cells (HMEC). Treatment of the BCC with 5aza converted the DNA restriction pattern to that seen in untreated HMEC genomic DNA and caused modest increases in gelsolin RNA and protein. Incubation with TSA, an inhibitor of histone deacetylase, induced a dramatic upregulation of gelsolin RNA and protein levels which preceded apoptotic death of all BCC within 48-60 h. Our data support a role for epigenetic changes in chromatin structure leading to downregulation of gelsolin expression in human breast cancer. To our knowledge, this is the first example of a tumor suppressor gene downregulated in human breast cancer by changes in histone acetylation.  相似文献   

17.
Herbal plants are enriched with compounds with a wide range of biological activities. Furanodiene is a sesquiterpene isolated from Rhizoma Curcumae. Growing evidence shows furanodiene exhibits diversified activities of hepatoprotection, anti-inflammation, anti-angiogenesis, and anti-tumor. However, its biological activities against breast cancer have not been deeply understood, and its potential as an anti-breast cancer agent combined with tamoxifen (TAM) has not been evaluated so far. This study describes the combined effects of furanodiene and TAM in human breast cancer cells in vitro. The results showed that ERa-negative MDA-MB-231 cells were much more sensitive than ERa-positive MCF-7 cells to the growth inhibition due to furanodiene. Combined administration of furanodiene and TAM led to marked increase in growth inhibition, cell cycle arrest and pro-apoptotic activity in ERa-positive cells compared to individual agent, and enhanced the down-regulation of p-cyclin D1, cyclin D1, CDK2, CDK6, p-Rb, Rb and p-p44, and the up-regulation of p27, Bax and Bad, but did not show increased cytotoxicity in ERa-negative MCF-10A non-tumorigenic breast epithelial cells. Co-incubation induced the typical PARP cleavage or caspase 9 cleavages compared to individual agent. In addition, PPARγ activity inhibition by its antagonist T0070907 did not significantly reverse the enhanced effect of furanodiene and TAM suggesting that anti-cancer properties of combination were PPARγ independent. Our data indicated that furanodiene could enhance the growth inhibitory and pro-apoptotic activity of TAM by inducing cell cycle arrest and cell apoptosis via CDKs-cyclins and mitochondria-caspases-dependent, and PPARγ-independent signaling pathways in breast cancer cells, without contributions to the cytotoxicity of TAM.  相似文献   

18.
To dissect the isoform-specific roles of Akt in breast cancer cells, constitutively active Akt isoforms were introduced into MDA-MB-231 cells. Both Akt1 and Akt2 efficiently inhibited the growth of MDA-MB-231 cells. Overexpression of Akt1 down-regulated ERK activity inhibiting Ser 259 phosphorylation of c-Raf and subsequent downstream signaling. Akt2 overexpression up-regulated the cell cycle inhibitor p27. Cycloheximide decay assays showed that Akt2 increased the stability and nuclear localization of p27, thus inhibiting the cyclin E/CDK2 complex. These results suggest that the inhibition of cell proliferation by Akt1 and Akt2 is mediated by isoform-specific mechanisms.  相似文献   

19.
Cyclin-dependent kinase 2 (CDK2) plays a key role in eukaryotic cell cycle progression which could facilitate the transition from G1 to S phase. The dysregulation of CDK2 is closely related to many cancers. CDK2 is utilized as one of the most studied kinase targets in oncology. In this article, 24 benzamide derivatives were designed, synthesized and investigated for the inhibition activity against CDK2. Our results revealed that the compound 25 is a potent CDK2 inhibitor exhibiting a broad spectrum anti-proliferative activity against several human breast cancer cells. Additionally, compound 25 could block cell cycle at G0 or G1 and induce significant apoptosis in MDA-MB-468 cells. These findings highlight a rationale for further development of CDK2 inhibitors to treat human breast cancer.  相似文献   

20.
It has been suggested that genes which exercise checkpoint control during cell cycle traverse are equally important to the process of apoptotic cell death. In this study, we show that the key cell cycle regulatory gene p21(WAF1) is also involved in the execution of apoptosis. p21(WAF1) expression was down-regulated during NaBu-induced apoptosis of senescent normal diploid human 2BS fibroblasts. Conversely, when p21(WAF1) expression was actively suppressed in 2BS cells by a stably transfected antisense p21(WAF1) construct, apoptosis was accelerated and senescence was delayed, as shown by several markers of cell aging. Down-regulation of p21(WAF1) by antisense caused an increase in the phosphorylation and inactivation of pRb. Phosphorylation of pRb was further enhanced upon induction of apoptosis by NaBu. Our results suggest that p21(WAF1), acting through the phosphorylation of pRb, regulates whether 2BS cells cease to proliferate and become senescent but resistant to apoptosis, or whether they accelerate proliferation while becoming more susceptible to apoptotic stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号