首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The 4S RNA of cyanelles from Cyanophora paradoxa strain LB 555 UTEX was fractionated by two-dimensional gel electrophoresis. Individual tRNA species were identified by aminoacylation, labeled in vitro and hybridized to restriction endonuclease fragments of cyanelle DNA. Hybridization experiments, using individual tRNA species, have revealed the location of two tRNA genes, coding for tRNAAla and tRNAIle, in each of the two spacer segments separating the 16S and 23S rRNA genes on the two inverted repeats (10 kbp each) and three tRNA genes in the small single-copy region (17 kbp) separating the two inverted repeats. A minimum of 14 tRNA genes in the large single-copy region (88.5 kbp) has also been found.Heterologous hybridization studies, using cyanelle tRNAs and chloroplast DNA from spinach, broad bean, or maize, indicate a high degree of homology between some tRNAs from cyanelles and chloroplasts.Although cyanelles are often condisered as having evolved from endosymbiotic cyanobacteria, the organization of tRNA genes on cyanelle DNA and the results of heterologous hybridization studies show that cyanelles are related to higher plant chloroplasts.  相似文献   

2.
3.
《BBA》1987,894(2):165-173
The capacity of ribulose-1,5-bisphosphate carboxylase to bind reversibly chloroplast metabolites which are the substrates for both thylakoid and stromal enzymes was assessed using spinach chloroplasts and chloroplast extracts and with pure wheat ribulose-1,5-bisphosphate carboxylase. Measurements of the rate of coupled electron flow to methyl viologen in ‘leaky’ chloroplasts (which retained the chloroplast envelope and stromal enzymes but which were permeable to metabolites) and also with broken chloroplasts and washed thylakoids were used to study the effects of binding ADP and inorganic phopshate to ribulose-1,5-bisphosphate carboxylase. The presence of ribulose-1,5-bisphosphate carboxylase significantly altered the values obtained for apparent Km for inorganic phosphate and ADP of coupled electron transport. The Km (Pi) in washed thylakoids was 60–80 μM, in ‘leaky’ chloroplasts it was increased to 180–200 μM, while in ‘leaky’ chloroplasts preincubated with KCN and ribulose 1,5-bisphosphate the value was decreased to 40–50 μM. Similarly, the Km (ADP) of coupled electron transport in washed thylakoids was 60–70 μM, in ‘leaky’ chloroplasts it was 130–150 μM and with ‘leaky’ chloroplasts incubated in the presence of KCN and ribulose 1,5-bisphosphate a value of 45–50 μM was obtained. The ability of ribulose 1,5-bisphosphate carboxylase to reduce the levels of free glycerate 3-phosphate in the absence of ribulose 1,5-bisphosphate was examined using a chloroplast extract system by varying the concentrations of stromal protein or purified ribulose 1,5-bisphosphate carboxylase. The effect of binding glycerate 3-phosphate to ribulose-1,5-bisphosphate carboxylase on glycerate 3-phosphate reduction was to reduce both the rate an the amount of NADPH oxidation for a given amount of glycerate 3-phosphate added. The addition of ribulose 1,5-bisphosphate reinitiated NADPH oxidation but ATP or NADPH did not. Incubation of purified ribulose-1,5-bisphosphate carboxylase with carboxyarabinitolbisphosphate completely inhibited the catalytic activity of the enzyme and decreased inhibition of glycerate-3-phosphate reduction. Two binding sites with different affinities for glycerate 3-phosphate were observed with pure ribulose-1,5-bisphosphate carboxylase.  相似文献   

4.
A rapid and simple method for constructing restriction maps of large DNAs (100-200 kb) is presented. The utility of this method is illustrated by mapping the Sal I, Sac I, and Hpa I sites of the 152 kb Atriplex triangularis chloroplast genome, and the Sal I and Pvu II sites of the 155 kb Cucumis sativa chloroplast genome. These two chloroplast DNAs are very similar in organization; both feature the near-universal chloroplast DNA inverted repeat sequence of 22-25 kb. The positions of four different genes have been localized on these chloroplast DNAs. In both genomes the 16S and 23S ribosomal RNAs are encoded by duplicate genes situated at one end of the inverted repeat, while genes for the large subunit of ribulose-1,5-bisphosphate carboxylase and a 32 kilodalton photosystem II polypeptide are separated by 55 kb of DNA within the large single copy region. The physical and genetic organization of these DNAs is compared to that of spinach chloroplast DNA.  相似文献   

5.
Gene map for the Cyanophora paradoxa cyanelle genome.   总被引:5,自引:3,他引:2       下载免费PDF全文
The genes for the following proteins were localized by hybridization analysis on the cyanelle genome of Cyanophora paradoxa: the alpha and beta subunits of phycocyanin (cpcA and cpcB); the alpha and beta subunits of allophycocyanin (apcA and apcB); the large and small subunits of ribulose-1,5-bisphosphate carboxylase (rbcL and rbcS); the two putative chlorophyll alpha-binding apoproteins of the photosystem I-P700 complex (psaA and psaB); four apoproteins believed to be components of the photosystem II core complex (psbA, psbB, psbC, and psbD); the two apoprotein subunits of cytochrome b-559 which is also found in the core complex of photosystem II (psbE and psbF); three subunits of the ATP synthase complex (atpA and atpBE); and the cytochrome f apoprotein (petA). Eighty-five percent of the genome was cloned as BamHI, BglII, or PstI fragments. These cloned fragments were used to construct a physical map of the cyanelle genome and to localize more precisely some of the genes listed above. The genes for phycocyanin and allophycocyanin were not clustered and were separated by about 25 kilobases. Although the rbcL gene was adjacent to the atpBE genes and the psbC and psbD genes were adjacent, the arrangement of other genes encoding various polypeptide subunits of protein complexes involved in photosynthetic functions was dissimilar to that observed for known chloroplast genomes. These results are consistent with the independent development of this cyanelle from a cyanobacterial endosymbiont.  相似文献   

6.
Nucleotide sequence of the cyanelle genome fromCyanophora paradoxa   总被引:3,自引:3,他引:0  
The complete nucleotide sequence of the cyanelle genome ofCyanophora paradoxa Pringsheim strain LB 555 was determined (accession number U30821). The circular molecule is 135,599 base pairs in length. The physical map of this DNA molecule is shown along with identified genes and open reading frames.  相似文献   

7.
With the use of spinach chloroplast RNAs as probes, we have mapped the rRNA genes and a number of protein genes on the chloroplast DNA (cpDNA) of the duckweed Spirodela oligorhiz. For a more precise mapping of these genes we had to extend the previously determined [14] restriction endonuclease map of the duckweed cpDNA with the cleavage sites for the restriction endonucleases Sma I and Bgl I. The physical map indicates that duckweed cpDNA contains two inverted repeat regions (18 Md) separated by two single copy regions with a size of 19 Md and 67 Md, respectively.By hybridization with spinach chloroplast rRNAs it could be shown that each of the two repeat units contains one set of rRNA genes in the order: 16S rRNA gene — spacer — 23S rRNA gene — 5S rRNA gene.A spinach chloroplast mRNA preparation (14S RNA), which is predominantly translated into a 32 Kilodalton (Kd) protein [9], hybridized strongly to a DNA fragment in the large single copy region, immediately outside one of the inverted repeats. With another mRNA preparation (18S), which mainly directs the in vitro synthesis of a 55 Kd protein [9], hybridization was observed with two DNA regions, located between 211° and 233° and between 137° and 170°, respectively. Finally, with a spinach chloroplast genomic probe for the large subunit of ribulose 1,5-bisphosphate carboxylase [17], hybridization was found with a DNA fragment located between 137° and 158° on the map.  相似文献   

8.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

9.
10.
The gene for the large subunit (LS) of ribulose-1,5,-bisphosphate carboxylase of Euglena gracilis Z chloroplast DNA has been mapped by heterologous hybridization with DNA restriction fragments containing internal sequences from the Zea mays and Chlamydomonas reinhardii LS genes. The Euglena LS gene which has the same polarity as the Euglena rRNA genes has been located with respect to Pst I, Pvu I, and HindIII sites within the Eco RI fragment Eco A. The region of Euglena chloroplast DNA complementary to an 887 bp internal fragment from the Chlamydomonas chloroplast LS gene is interrupted by a 0.5-1.1 kbp non-complementary sequence. This is the first chloroplast protein gene located on the Euglena genome, and the first evidence for an intervening sequence within any chloroplast protein gene.  相似文献   

11.
The distribution of phosphoribulose kinase (PRK) in the cyanelles of Cyanophora paradoxa Korschikoff and Glaucocystis nostochinearum Itzigsohn was studied by protein A-gold immunoelectron microscopy. In both endocyanomes, antiserum against PRK heavily labeled the thylakoid region of the cyanelles, whereas little or no label was present over the carboxysomes. Antiserum against ribulose 1,5-bisphosphate carboxylase/oxygenase by contrast heavily labeled the carboxysomes of each endocyanome. In vitro studies of PRK distribution in cell-free extracts of C. paradoxa showed that 93% of the enzyme was in the soluble fraction. Quantitative immunoelectron microscopy showed that more than 99% of the PRK in the cyanelle of C. paradoxa was localized in the thylakoid region. We conclude that the carboxysomes of cyanelles like the carboxysomes of autotrophic prokaryotes and the pyrenoids of green algal chloroplasts do not contain phosphoribulose kinase.  相似文献   

12.
The polypeptide composition of Fraction I protein (ribulose-1,5-bisphosphate carboxylase) prepared from leaves of two clones of the parasexual hybrid plant Arabidopsis thaliana + Brassica campestris as well as their parents was analyzed by isoelectric focusing. The protein in hybrid plants contained a heterogenous population of small subunits resulting from the expression of both Arbabidopsis and Brassica nuclear genes, whereas the large subunit polypeptides, and hence the functional chloroplast DNA, were from the Brassica parent.  相似文献   

13.
Gerhard Link 《Planta》1982,154(1):81-86
The steady-state levels of plastid RNA sequences in dark-grown and light-grown mustard (Sinapis alba L.) seedlings have been compared. Total cellular RNAs were labeled in vitro with 32P and hybridized to separated restriction fragments of plastid DNA. Cloned DNA fragments which encode the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxylase (dimerizing), EC 4.1.1.39] and a 35,000 plastid polypeptide were used as probes to assess the levels of these two plastid mRNAs. The 1.22-kilobase-pair mRNA for the 35,000 polypeptide is almost undetectable in dark-grown seedlings, but is a major plastid mRNA in light-grown seedlings. The hybridization analysis of RNA from seedlings which were irradiated with red and far-red light indicates that the level of this mRNA, but not of LS mRNA, is controlled by phytochrome.Abbreviations LS large subunit - RuBP ribulose-1,5-bisphosphate - ptDNA plastid DNA  相似文献   

14.
Summary A restriction endonuclease fragment map of sugar beet chloroplast DNA (ctDNA) has been constructed with the enzymes SmaI, PstI and PvuII. The ctDNA was found to be contained in a circular molecule of 148.5 kbp. In common with many other higher plant ctDNAs, sugar beet ctDNA consists of two inverted repeat sequences of about 20.5 kbp separated by two single-copy regions of different sizes (about 23.2 and 84.3 kbp). Southern hybridization analyses indicated that the genes for rRNAs (23S+16S) and the large subunit of ribulose 1,5-bisphosphate carboxylase were located in the inverted repeats and the large single-copy regions, respectively.  相似文献   

15.
香蕉rbcS基因启动子的克隆及序列分析   总被引:1,自引:0,他引:1  
以巴西香蕉为材料,根据已经获得的香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的全长cDNA序列设计1对专一引物,通过PCR扩增得到了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基的基因组全长,序列长811 bp,含有2个内含子。根据其基因组序列设计引物,采用SEFA-PCR方法,以总DNA为模板克隆了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的启动子序列,长1 681 bp。用PLACE软件分析发现该序列具有启动子的基本元件TATA-box、CAAT-box,包含多个胁迫诱导元件,如光诱导元件、赤霉素、低温诱导元件、昼夜节律调控元件等。该序列的克隆与分析为进一步研究香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的表达调控奠定了基础。  相似文献   

16.
In order to understand more fully chloroplast genetic systems, we have determined the complete nucleotide sequence (155, 844 bp) of tobacco (Nicotiana tabacum var. Bright Yellow 4) chloroplast DNA. It contains two copies of an identical 25,339 bp inverted repeat, which are separated by 86, 684 bp and 18,482 bp single-copy regions. The genes for 4 different rRNAs, 30 different tRNAs, 44 different proteins and 9 other predicted protein-coding genes have been located. Fifteen different genes contain introns.Twenty-two genes for components of the photosynthetic apparatus have so far been identified. Most of the genes (except the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) code for thylakoid membrane proteins. Twenty of them are located in the large single-copy region and one gene for a 9-kd polypeptide of photosystem I is located in the small single-copy region. The gene for the 32-kd protein of photosystem II as well as the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase have strong promoters and are transcribed monocistronically while the other genes are transcribed polycistronically. We have found that the predicted amino acid sequences of six DNA sequences resemble those of components of the respiratory-chain NADH dehydrogenase from human mitochondria. As these six sequences are highly transcribed in tobacco chloroplasts, they are probably genes for components of a chloroplast NADH dehydrogenase. These observations suggest the existence of a respiratory-chain in the chloroplast of higher plants.  相似文献   

17.
18.
19.
For purifying carboxysomes of Thiobacillus neapolitanus an isolation procedure was developed which resulted in carboxysomes free from whole cells, protoplasts and cell fragments. These purified carboxysomes are composed of 8 proteins and at the most of 13 polypeptides. The two most abundant proteins which make up more than 60% of the carboxysomes, are ribulose-1,5-bisphosphate carboxylase and a glycoprotein with a molecular weight of 54,000. The shell of the carboxysomes consists of four glycoproteins, one also with a molecular weight of 54,000. The other proteins are present in minor quantities. Ribulose-1,5-bisphosphate carboxylase is the only enzyme which could be detected in the carboxysomes and 3-phosphoglycerate was the only product formed during incubation with ribulose-1,5-diphosphate and bicarbonate. The supernatant of a broken and centrifuged carboxysome suspension contained the large subunit of ribulose-1,5-bisphosphate carboxylase. The small subunit of ribulose-1,5-bisphosphate carboxylase was found in the pellet together with the shell proteins which indicates that the small subunit of ribulose-1,5-bisphosphate carboxylase is connected to the shell.Abbreviations RuBisCO ribulose-1,5-bisphosphate carboxylase - PMSF phenylmethylsulfonyl fluoride - PAA gelectrophoresis, polyacrylamide gelelectrophoresis - SDS sodium dodecyl sulphate - CIE crossed immunoelectrophoresis - IEF isoelectric focusing  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号