首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Summary A quantative cytochemical assay for PPi-PFK activity in the presence of Fru-2,6-P2 is described along with its application to determine levels of activity in embryos of Pisum sativum and Avena sativa. The activity of ATP-PFK has also been studied in parallel as have PFK activities during the switch from dormant to non-dormant embryos in Avena sativa. PPi-PFK activity, has been demonstrated in all tissues of Pisum sativum embryos and of Avena sativa embryos including the scutellum and the aleurone layers. The PPi-PFK activity was greater than that of ATP-PFK in both dormant and non-dormant seeds though with only marginally more activity in the dormant as opposed to the non-dormant state.Abbreviations AMP adenosine monophosphate - ATP adenosine triphosphate - Fru-1,6-P2 fructose 1,6-bisphosphate - Fru-2,6-P2 fructose 2,6-bisphosphate - Fru-6-P fructose 6-phosphate - FB Pase 2 fructose 2,6-bisphosphatase (EC 3.1.3.46) - Gl-3-PD glyceraldehyde-3-phosphate dehydrogenase - NAD nicotinamide adenine dinucleotide - NBT nitroblue tetrazolium - PEP phosphoenolpyruvate - PFK 6-phosphofructokinase (EC 2.7.1.11) - PFK2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PPi pyrophosphate - PPi-PFK pyrophosphate: fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) - PVA polyvinyl alcohol (G04/140 Wacke Chemical Company)  相似文献   

2.
A pyrophosphate-dependent phosphofructokinase (PPi-PFK) and an ATP-dependent phosphofructokinase (ATP-PFK) from Thermotoga maritima have been cloned and characterized. The PPi-PFK is unique in that the Km and Vmax values indicate that polyphosphate is the preferred substrate over pyrophosphate; the enzyme in reality is a polyphosphate-dependent PFK. The ATP-PFK was not significantly affected by common allosteric effectors (e.g., phosphoenolpyruvate) but was strongly inhibited by PPi and polyphosphate. The results suggest that the control of the Embden-Meyerhof pathway in this organism is likely to be modulated by pyrophosphate and/or polyphosphate.  相似文献   

3.
Flux into the glycolytic pathway of most cells is controlled via allosteric regulation of the irreversible, committing step catalyzed by ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11), the key enzyme of glycolysis. In some organisms, the step is catalyzed by PPi-dependent PFK (PPi-PFK; EC 2.7.1.90), which uses PPi instead of ATP as the phosphoryl donor, conserving ATP and rendering the reaction reversible under physiological conditions. We have determined the enzymic properties of PPi-PFK from the anaerobic, hyperthermophilic archaeon Thermoproteus tenax, purified the enzyme to homogeneity, and sequenced the gene. The ∼100-kDa PPi-PFK from T. tenax consists of 37-kDa subunits; is not regulated by classical effectors of ATP-PFKs such as ATP, ADP, fructose 2,6-bisphosphate, or metabolic intermediates; and shares 20 to 50% sequence identity with known PFK enzymes. Phylogenetic analyses of biochemically characterized PFKs grouped the enzymes into three monophyletic clusters: PFK group I represents only classical ATP-PFKs from Bacteria and Eucarya; PFK group II contains only PPi-PFKs from the genus Propionibacterium, plants, and amitochondriate protists; whereas group III consists of PFKs with either cosubstrate specificity, i.e., the PPi-dependent enzymes from T. tenax and Amycolatopsis methanolica and the ATP-PFK from Streptomyces coelicolor. Comparative analyses of the pattern of conserved active-site residues strongly suggest that the group III PFKs originally bound PPi as a cosubstrate.As first discovered in Entamoeba histolytica (27), in some members of all three domains of life (Bacteria, Eucarya, and Archaea), the first committing step of glycolysis, the phosphorylation of fructose 6-phosphate (Fru 6-P), is catalyzed not by common ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11) but by an enzyme which uses PPi as a phosphoryl donor (PPi-PFK; EC 2.7.1.90) (2234). The only archaeal PPi-PFK described so far is the enzyme of Thermoproteus tenax, a hyperthermophilic, anaerobic archaeon which is able to grow chemolithotrophically with CO2, H2, and S0, as well as chemo-organothrophically in the presence of S0 and carbohydrates (11, 41). As shown by enzymatic and in vivo studies (pulse-labeling experiments), T. tenax metabolizes glucose mainly via a variation of the Embden-Meyerhof-Parnas pathway distinguished by the reversible PPi-PFK reaction (34, 35).In contrast to the virtually irreversible reaction catalyzed by the ATP-PFK, the phosphorylation by PPi is reversible. Thus, for thermodynamic reasons, the PPi-PFK should be able to replace the enzymes of both the forward (ATP-PFK) and reverse (fructose-bisphosphatase [FBPase]) reactions. Consistent with the presumed bivalent function of the PPi-dependent enzyme, in prokaryotes and parasitic protists which possess PPi-PFK, little, if any, ATP-PFK or FBPase activity is present. Strikingly, the PPi-PFKs of these organisms proved to be nonallosteric, suggesting that the control of the carbon flux through the pathway is no longer exerted by the PFK in these organisms. A considerably different situation has been described for higher plants and the green alga Euglena gracilis, showing comparable ATP-PFK, FBPase, and PPi-PFK activities and allosteric regulation of their PPi-dependent enzyme by fructose 2,6-bisphosphate (12, 22). However, in most cases it is not obvious which physiological role PPi-PFK performs: reversible catalysis of glycolysis/gluconeogenesis, increase of the energy yield of glycolysis under certain conditions in which the energy charge is low, or ATP-conservation in obligately fermentative organisms (22).Closely related to questions concerning the biological function of PPi-PFKs is the matter of their evolutionary origin: are these enzymes the result of a secondary adaptation from ATP-PFKs, or do they represent an original phenotype, as suggested by their specificity for PPi, which is thought to be an ancient source of metabolic energy (9, 18, 19, 26). Indicated by sequence similarity (3, 4), all known PPi- and ATP-PFKs are homologous and therefore originated from a common ancestral root. From more recent studies of Streptomyces coelicolor PFK (4), the previous assumption of a single event which separated PPi- and ATP-PFKs had to be revised in favor of a multiple differentiation, leaving open, however, the question of the primary or secondary origin of PPi-PFK.Understanding of PFK evolution has been impaired by a lack of knowledge concerning archaeal PFK, although the existence of ATP-PFK (31), PPi-PFK (34), and also ADP-dependent PFK (16, 31) in Archaea has been described. To address the evolution of PFK, we describe the PPi-PFK from T. tenax and compare its sequence and structure to those of known bacterial and eucaryal PFK enzymes.  相似文献   

4.
The inhibition of rabbit liver fructose 1,6-bisphosphatase (EC 3.1.3.11) by fructose 2,6-bisphosphate (Fru-2,6-P2) is shown to be competitive with the substrate, fructose 1,6-bisphosphate (Fru-1,6-P2), with Ki for Fru-2,6-P2 of approximately 0.5 μm. Binding of Fru-2,6-P2 to the catalytic site is confirmed by the fact that it protects this site against modification by pyridoxal phosphate. Inhibition by Fru-2,6-P2 is enhanced in the presence of a noninhibitory concentration (5 μm) of the allosteric inhibitor AMP and decreased by modification of the enzyme by limited proteolysis with subtilisin. Fru-2,6-P2, unlike the substrate Fru-1,6-P2, protects the enzyme against proteolysis by subtilisin or lysosomal proteinases.  相似文献   

5.
The effects of pretreatment with HCN on the level of fructose 2.6-bisphosphate (F-2,6-P2). on activity of fructose 6-phosphate 2-kinase (EC 2.7.1.150; F-6-P. 2K. enzyme synthesizing F-2,6-P2), as well as on activities of PP1-dependent and ATP-dependent phosphofructokinases (EC 2.7.1.90. PP1-PFK and EC 2.7.1.11, ATP-PFK) were studied in cultured, dormant embryos of apple ( Malus domestica Borb. cv. Antonówka). HCN increased the F-2.6-P2 level and F-6-P, 2K activity in embryonal axes (3-fold), but had no effect in cotyledons. HCN pretreatment of embryos or the addition of F-2.6-P2 to enzyme extract stimulated PP1, -PFK activity, whereas the activity of ATP-PFK was slightly inhibited by HCN in axes and in cotyledons. Glycolysis is one of the first processes in the germination of apple embryos, and the stimulation of glycolysis by HCN may be the result of F-6-P, 2K activation in the axes. This will lead to accumulation of F-2,6-P2, which, in turn, enhances glycolysis by activation of PP1PKF.  相似文献   

6.
The biogenic amine octopamine was injected into the haemolymph of 20-days old male locusts,Locusta migratoria, and the content of fructose 2,6-bisphosphate, a potent activator of glycolysis, was measured in the flight muscle after various time. Octopamine brought about a transient increase in fructose 2,6-bisphosphate. After the injection of 10 l of 10 mmol·l-1 d, l-octopamine fructose 2,6-bisphosphate was increased by 61% within 2 min. Ten minutes after the injection fructose 2,6-bisphosphate was increased to 6.71±0.89 nmol·g-1 flight muscle, almost 300% over the control value. Flight caused fructose 2,6-bisphosphate in flight muscle to decrease, but this decrease was counteracted by octopamine injected into the haemolymph of flying locusts. Octopamine and fructose 2,6-bisphosphate may act as signals to stimulate the oxidation of carbohydrate and to integrate muscle performance and metabolism. This mechanism appears particularly significant in the initial stage of flight when carbohydrates are the main fuel.Abbreviations F2,6P2 fructose 2,6-bisphosphate - F6P fructose 6-phosphate - PFK1 6-phosphofructokinase (EC 2.7.1.11) - P i inorganic phosphate - PP i -PFK pyrophosphate dependent fructose 6-phosphate phosphotransferase (EC 2.7.1.90)  相似文献   

7.
Wu MX  Smyth DA  Black CC 《Plant physiology》1983,73(1):188-191
The activity of pyrophosphate: d-fructose-6-phosphate-1-phosphotransferase (EC 2.7.1.90, PPi-PFK) in cotyledons and sprouts of germinating pea seeds (Pisum sativum cv Alaska or Green Arrow) increases rapidly during the first 2 to 3 days after imbibition and then declines to a lower activity. The reaction toward fructose 1,6-bisphosphate formation is activated greatly by fructose 2,6-bisphosphate (fru 2,6-P2); however, the sensitivity of the enzyme's activity to fru 2,6-P2 activation changes during germination.  相似文献   

8.
Cell-free extracts of d-fructose grown cells of Pseudomonas putida, P. fluorescens, P. aeruginosa, P. stutzeri, P. mendocina, P. acidovorans and P. maltophila catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose and contained 1-P-fructokinase activity suggesting that in these species fructuse-1-P and fructose-1,6-P2 were intermediates of d-fructose catabolism. Neither the 1-P-fructokinase nor the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose was present in significant amounts in succinate-grown cells indicating that both activities were inducible. Cell-free extracts also contained activities of fructose-1,6-P2 aldolase, fructose-1,6-P2 phosphatase, and P-hexose isomerase which could convert fructose-1,6-P2 to intermediates of either the Embden-Meyerhof pathway or Entner-Doudoroff pathway. Radiolabeling experiments with 1-14C-d-fructose suggested that in P. putida, P. aeruginosa, P. stutzeri, and P. acidovorans most of the alanine was made via the Entner-Doudoroff pathway with a minor portion being made via the Embden-meyerhof pathway. An edd - mutant of P. putida which lacked a functional Entner-Doudoroff pathway but was able to grow on d-fructose appeared to make alanine solely via the Embden-Meyerhof pathway.Non-Standard Abbreviations cpm counts per min - edd - mutant lacking Entner-Doudoroff dehydrase (6-PGA dehydrase) - EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTs PEP: d-fructose phosphotransferase system - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

9.
The aim of this work was to examine the possibility that fructose 2,6-bisphosphate (Fru-2,6-P2) plays a role in the regulation of gluconeogenesis from fat. Fru-2,6-P2 is known to inhibit cytoplasmic fructose 1,6-bisphosphatase and stimulate pyrophosphate:fructose 6-phosphate phosphotransferase from the endosperm of seedlings of castor bean (Ricinus communis). Fru-2,6-P2 was present throughout the seven-day period in amounts from 30 to 200 picomoles per endosperm. Inhibition of gluconeogenesis by anoxia or treatment with 3-mercaptopicolinic acid doubled the amount of Fru-2,6-P2 in detached endosperm. The maximum activities of fructose 6-phosphate,2-kinase and fructose 2,6-bisphosphatase (enzymes that synthesize and degrade Fru-2,6-P2, respectively) were sufficient to account for the highest observed rates of Fru-2,6-P2 metabolism. Fructose 6-phosphate,2-kinase exhibited sigmoid kinetics with respect to fructose 6-phosphate. These kinetics became hyperbolic in the presence of inorganic phosphate, which also relieved a strong inhibition of the enzyme by 3-phosphoglycerate. Fructose 2,6-bisphosphatase was inhibited by both phosphate and fructose 6-phosphate, the products of the reaction. The properties of the two enzymes suggest that in vivo the amounts of fructose-6-phosphate, 3-phosphoglycerate, and phosphate could each contribute to the control of Fru-2,6-P2 level. Variation in the level of Fru-2,6-P2 in response to changes in the levels of these metabolites is considered to be important in regulating flux between fructose 1,6-bisphosphate and fructose 6-phosphate during germination.  相似文献   

10.
Theodorou ME  Kruger NJ 《Planta》2001,213(1):147-157
A major problem in defining the physiological role of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) is the 1,000-fold discrepancy between the apparent affinity of PFP for its activator, fructose 2,6-bisphosphate (Fru-2,6-P2), determined under optimum conditions in vitro and the estimated concentration of this signal metabolite in vivo. The aim of this study was to investigate the combined influence of metabolic intermediates and inorganic phosphate (Pi) on the activation of PFP by Fru-2,6-P2. The enzyme was purified to near-homogeneity from leaves of spinach (Spinacia oleracea L.). Under optimal in vitro assay conditions, the activation constant (K a) of spinach leaf PFP for Fru-2,6-P2 in the glycolytic direction was 15.8 nM. However, in the presence of physiological concentrations of fructose 6-phosphate, inorganic pyrophosphate (PPi), 3-phosphoglycerate (3PGA), phosphoenolpyruvate (PEP), ATP and Pi the K a of spinach leaf PFP for Fru-2,6-P2 was up to 2000-fold greater than that measured in the optimised assay and V max decreased by up to 62%. Similar effects were observed with PFP purified from potato (Solanum tuberosum L.) tubers. Cytosolic metabolites and Pi also influenced the response of PFP to activation by its substrate fructose 1,6-bisphosphate (Fru-1,6-P2). When assayed under optimum conditions in the gluconeogenic direction, the K a of spinach leaf PFP for Fru-1,6-P2 was approximately 50 μM. Physiological concentrations of PPi, 3PGA, PEP, ATP and Pi increased K a up to 25-fold, and decreased V max by over 65%. From these results it was concluded that physiological concentrations of metabolites and Pi increase the K a of PFP for Fru-2,6-P2 to values approaching the concentration of the activator in vivo. Hence, measured changes in cytosolic Fru-2,6-P2 levels could appreciably alter the activation state of PFP in vivo. Moreover, the same levels of metabolites increase the K a of PFP for Fru-1,6-P2 to an extent that activation of PFP by this compound is unlikely to be physiologically relevant. Received: 21 July 2000 / Accepted: 15 September 2000  相似文献   

11.
Fructose 6-phosphate from several commercial sources was shown to be contaminated with fructose 2,6-bisphosphate. This contaminant was identified by its activation of PPi:fructose 6-phosphate phosphotransferase, extreme acid lability and behaviour on ion-exchange chromatography. The apparent kinetic properties of PPi:fructose 6-phosphate phosphotransferase from castor bean endosperm were considerably altered when contaminated fructose 6-phosphate was used as a substrate. Varying levels of fructose 2,6-bisphosphate in the substrate may account for differences that have been observed in the properties of the above enzyme from several plant sources.  相似文献   

12.
Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to “short” bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.  相似文献   

13.
Cell-free extracts of d-fructose grown cells of marine species of Alcaligenes as well as Pseudomonas marina contained an activity which catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose in the 1-position as well as activities of the following enzymes: 1-P-fructokinase, fructose-1,6-P2 aldolase, PPi-dependent 6-P-fructokinase, fructokinase, glucokinase, P-hexose isomerase, glucose-6-P dehydrogenase, 6-P-gluconate dehydrase, and 2-keto-3-deoxy-6-P-gluconate aldolase. The presence of these enzyme activities would allow d-fructose to be degraded by the Embden-Meyerhof pathway and/or the Entner-Doudoroff pathway. In cell-free extracts of d-glucose grown cells, the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose as well as 1-P-fructokinase activity were reduced or absent while the remaining enzymes were present at levels similar to those found in d-fructose grown cells. Radiolabeling experiments suggested that both d-fructose and d-glucose were utilized primarily via the Entner-Doudoroff pathway. Alteromonas communis, a marine species lacking 1-P-fructokinase and the PPi-dependent 6-P-fructokinase, contained all the enzyme activities necessary for the catabolism of d-fructose and d-glucose by the Entner-Doudoroff pathway; the involvement of this pathway was also consistent with the results of the radiolabeling experiments.Non-Standard Abbreviations EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTS PEP: d-fructose phosphotransferase system - PPi-6-PFK PPi dependent 6-PFK - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

14.
F. D. Macdonald  J. Preiss 《Planta》1986,167(2):240-245
The cytoplasm was identified as the probable location of pyrophosphate-fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) in suspension-cultured cells of soybean (Glycine max L.). The characteristics of the partially purified enzyme were investigated. The activity was strongly dependent on the presence of fructose 2,6-bisphosphate and this activator exerted its effects through a dramatic increase in the affinity of the enzyme for its substrates, fructose 6-phosphate and inorganic pyrophosphate. Saturation curves for all substrates were hyperbolic. The apparent molecular weight of the partially purified enzyme was 183000 by gel filtration chromatography and 128000 by sucrose-density-gradient centrifugation. The activation by fructose 2,6-bisphosphate was not accompanied by any measurable change in molecular weight. The possible role of this enzyme in the metabolism of non-photosynthetic sink tissues is discussed.Abbreviations PFP pyrophosphate-fructose-6-phosphate 1-phosphotransferase - Pi phosphate - PPi pyrophosphate  相似文献   

15.
The distribution of enzymes interconverting fructose 6-phosphate and fructose 1,6-bisphosphate has been studied in a range of tissues from castor bean seedlings. In each tissue the activity of PPi:fructose 6-phosphate phosphotransferase was greater than phosphofructokinase and substantial compared with fructose 1,6-bisphosphatase. PPi:fructose 6-phosphate phosphotransferase in endosperm is apparently confined to the cytoplasm. The role of this latter enzyme in vivo is discussed.  相似文献   

16.
Studies on the entry of fructose-2,6-bisphosphate into chloroplasts   总被引:13,自引:2,他引:11       下载免费PDF全文
The regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2) has an important function in controlling the intermediary carbon metabolism of leaves. Fru-2,6-P2 controls two cytosolic enzymes involved in the interconversion of fructose-6-phosphate and fructose-1,6-bisphosphate (fructose-1,6-bisphosphatase and pyrophosphate, fructose-6-phosphate 1-phosphotransferase) and thereby controls the partitioning of photosynthate between sucrose and starch. It has been demonstrated that Fru-2,6-P2 is present mainly in the cytosol. Here we present evidence that Fru-2,6-P2 can be taken up by isolated intact chloroplasts but at a very slow rate (about 0.01 micromoles per milligram of chlorophyll per hour). This uptake is time and concentration dependent and is inhibited by PPi. When provided a physiological concentration of Fru-2,6-P2 (10 micromolar), chloroplasts accumulated up to 0.6 micromolar Fru-2,6-P2 in the stroma. Elevated plastid Fru-2,6-P2 levels had no effect on overall photosynthetic rates of isolated chloroplasts. The results indicate that, while Fru-2,6-P2 enters isolated chloroplasts at a sluggish rate, caution should be exercised in ascribing physiological importance to effects of Fru-2,6-P2 on chloroplast enzymes.  相似文献   

17.
Metabolism of fructose arising endogenously from sucrose or mannitol was studied in halophilic archaebacteria Haloarcula vallismortis and Haloferax mediterranei. Activities of the enzymes of Embden-Meyerhof-Parnas (EMP) pathway, Entner-Doudoroff (ED) pathway and Pentose Phosphate (PP) pathway were examined in extracts of cells grown on sucrose or mannitol and compared to those grown on fructose and glucose. Sucrase and NAD-specific mannitol dehydrogenase were induced only when sucrose or mannitol respectively were the growth substrates. Endogenously arising fructose was metabolised in a manner similar to that for exogenously supplied fructose i.e. a modified EMP pathway initiated by ketohexokinase. While the enzymes for modified EMP pathway viz. ketohexokinase, 1-phosphofructokinase and fructose 1,6-bisphosphate aldolase were present under all growth conditions, their levels were elevated in presence of fructose. Besides, though fructose 1,6-bisphosphatase, phosphohexoseisomerase and glucose 6-phosphate dehydrogenase were present, the absence of 6-phosphogluconate dehydratase precluded routing of fructose through ED pathway, or through PP pathway directly as 6-phosphogluconate dehydrogenase was lacking. Fructose 1,6-bisphosphatase plays the unusual role of a catabolic enzyme in supporting the non-oxidative part of PP pathway. However the presence of constitutive levels of glucose dehydrogenase and 2-keto 3-deoxy 6-phosphogluconate aldolase when glucose or sucrose were growth substrates suggested that glucose breakdown took place via the modified ED pathway.Abbreviations EMP Embden Meyerhof Parnas - ED Entner Doudoroff - PP pentose phosphate - KHK ketohexokinase - 1-PFK 1-phosphofructokinase - PEP-PTS phosphoenolpyruvate phosphotransferase - 6-PFK 6-phosphofructokinase - FBPase fructose 1,6-bisphosphatase - PHI phosphohexoseisomerase - G6P-DH glucose 6-phosphate dehydrogenase - 6PG-DH 6-phosphogluconate dehydrogenase - GAPDH glyceraldehyde 3-phosphate dehydrogenase - FIP fructose 1-phosphate - GSH reduced glutathione - 2-ME -mercaptoethanol - FBP fructose 1,6-bisphosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - F6P fructose 6-phosphatez  相似文献   

18.
Total 6-phosphofructo-1-kinase (PFK) activity, amounts of each type of PFK subunit, and levels of fructose-2,6-P2 in the cerebral cortex, midbrain, pons-medulla, and cerebellum of 3, 12, and 25 month rats were measured. Further, the role of fructose-2,6-P2 in the regulation of brain PFK activity was examined. A positive correlation was found to exist between the reported losses of glucose utilization as measured by 2-deoxy-D-glucose uptake and PFK activity in each region. That is, both parameters decreased to their lowest level by 12 months of age and remained decreased and fairly constant thereafter. Fructose-2,6-P2 levels did not appear to directly correlate with regional changes in glucose utilization. Also, region-specific and age-related alterations of the PFK subunits were found although these changes apparently did not correlate with decreased glucose utilization. Brain PFK is apparently saturated with fructose-2,6-P2 due to the high endogenous levels, and it contains a large proportion of the C-type subunit which dampens catalytic efficiency. Consequently, brain PFK could exist in a conformational state such that it can readily consume fructose-6-P rather than in an inhibited state requiring activation. This may explain, in part, the ability of brain to efficiently but conservatively utilize available glucose in energy production.Abbreviations fructose-2,6-P2 D-fructose 2,6-bisphosphate - fructose-6-P D-fructose 6-phosphate - PAGE Polyacrylamide Gel Electrophoresis - PFK 6-phosphofructo-1-kinase - PPi-PFK Pyrophosphate-dependent Phosphofructokinase, ribose-1,5-P2, ribose-1,5-bisphosphate - SDS Sodium Dodecyl Sulfate  相似文献   

19.
The breakdown of sucrose to feed both hexoses into glycolytic carbon flow can occur by the sucrose synthase pathway. This uridine diphosphate (UDP) and pyrophosphate (PPi)-dependent pathway was biochemically characterized using soluble extracts from several plants. The sucrolysis process required the simultaneous presence of sucrose, UDP, and PPi with their respective Km values being about 40 millimolar, 23 micromolar, and 29 micromolar. UDP was the only active nucleotide diphosphate. Slightly alkaline pH optima were observed for sucrose breakdown either to glucose 1-phosphate or to triose phosphate. Sucrolysis incrased with increasing temperature to near 50°C and then a sharp drop occurred between 55 and 60°C. The breakdown of sucrose to triose-P was activated by fructose 2,6-P2 which had a Km value near 0.2 micromolar. The cytoplasmic phosphofructokinase and fructokinase in plants were fairly nonselective for nucleotide triphosphates (NTP) but glucokinase definitely favored ATP. A predicted stoichiometric relationship of unity for UDP and PPi was measured when one also measured competing UDPase and pyrophosphatase activity. The cycling of uridylates, UDP to UTP to UDP, was demonstrated both with phosphofructokinase and with fructokinase. Enzyme activity measurements indicated that the sucrose synthase pathway has a major role in plant sucrose sink tissues. In the cytoplasmic sucrose synthase breakdown pathway, a role for the PPi-phosphofructokinase was to produce PPi while a role for the NTP-phosphofructokinase and for the fructokinase was to produce UDP.  相似文献   

20.
Scott P  Lange AJ  Kruger NJ 《Planta》2000,211(6):864-873
The aim of this work was to examine the role of fructose 2,6-bisphosphate (Fru-2,6-P2) in photosynthetic carbon partitioning. The amount of Fru-2,6-P2 in leaves of tobacco (Nicotiana tabacum L. cv. Samsun) was reduced by introduction of a modified mammalian gene encoding a functional fructose-2,6-bisphosphatase (EC 3.1.3.46). Expression of this gene in transgenic plants reduced the Fru-2,6-P2 content of darkened leaves to between 54% and 80% of that in untransformed plants. During the first 30 min of photosynthesis sucrose accumulated more rapidly in the transgenic lines than in the untransformed plants, whereas starch production was slower in the transgenic plants. On illumination, the proportion of 14CO2 converted to sucrose was greater in leaf disks of transgenic lines possessing reduced amounts of Fru-2,6-P2 than in those of the control plants, and there was a corresponding decrease in the proportion of carbon assimilated to starch in the transgenic lines. Furthermore, plants with smaller amounts of Fru-2,6-P2 had lower rates of net CO2 assimilation. In illuminated leaves, decreasing the amount of Fru-2,6-P2 resulted in greater amounts of hexose phosphates, but smaller amounts of 3-phosphoglycerate and dihydroxyacetone phosphate. These differences are interpreted in terms of decreased inhibition of cytosolic fructose-1,6-bisphosphatase resulting from the lowered Fru-2,6-P2 content. The data provide direct evidence for the importance of Fru-2,6-P2 in co-ordinating chloroplastic and cytosolic carbohydrate metabolism in leaves in the light. Received: 8 February 2000 / Accepted: 25 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号