首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new coenzyme of methyl transfer, coenzyme M   总被引:34,自引:0,他引:34  
B C McBride  R S Wolfe 《Biochemistry》1971,10(12):2317-2324
  相似文献   

2.
alpha, beta-Unsaturated coenzyme A (CoA) thioesters including acrylyl CoA, methacrylyl CoA, and propiolyl CoA were synthesized by catalysis with acetyl CoA synthetase (EC 6.2.1.1.). After isolation from the enzymatic reactions, the products were found to be the result of 1,4 addition of CoASH to the double bond and addition of water to the triple bond of the initial acyl CoA adducts. Structural determinations of these products by 1H NMR, 13C NMR, and the chemical reactions leading to their formation are described.  相似文献   

3.
4.
Two purified fractions from Clostridium thermoaceticum are shown to catalyze the following reaction: CO + CH3THF + CoA ATP leads to CH3COCoA + THF. The methyltetrahydrofolate (CH3THF) gives rise to the methyl group of the acetyl-coenzyme A (CoA) and the carbon monoxide (CO) and CoA to its carboxyl thio ester group. The role of ATP is unknown. One of the protein fractions (F2) is a methyltransferase, whereas the other fraction (F3) contains CO dehydrogenase and a methyl acceptor which is postulated to be a corrinoid enzyme. The methyltransferase catalyzes the transfer of the methyl group to the methyl acceptor, and the CO is converted to a formyl derivative by the CO dehydrogenase. By a mechanism that is as yet unknown, the formyl derivative in combination with CoA and the methyl of the methyl acceptor are converted to acetyl-CoA. It is also shown that fraction F3 catalyzes the reversible exchange of 14C from [1-14C]acetyl-CoA into 14CO and that ATP is required, but not the methyltransferase. It is proposed that these reactions are part of the mechanism which enables certain autotrophic bacteria to grow on CO. It is postulated that CH3THF is synthesized from CO and tetrahydrofolate which then, as described above, is converted to acetyl-CoA. The acetyl-CoA then serves as a precursor in other anabolic reactions. A similar autotropic pathway may occur in bacteria which grow on carbon dioxide and hydrogen.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
《FEBS letters》1985,181(2):303-307
Methanobacterium thermoautotrophicum, a methane forming archaebacterium, grows autotrophically by synthesizing activated acetic acid from 2 CO2. It is demonstrated in vitro that the methyl group of acetate is derived from methenyl tetrahydromethanopterin, which is known to be a one-carbon carrying coenzyme in CO2 reduction to methane. The direct acetate precursors are suggested to be methyl tetrahydromethanopterin (“activated methanol”) and “activated carbon monoxide”.  相似文献   

20.
H M Miziorko  C E Behnke  F Ahmad 《Biochemistry》1989,28(14):5759-5764
Incubation of 3-chloropropionyl-CoA with 3-hydroxy-3-methylglutaryl-CoA synthase results in exchange of the C2 proton with solvent as inactivation of enzyme proceeds. This enzyme is also inhibited by S-acrylyl-N-acetylcysteamine; the limiting rate constant for inactivation by the acrylyl derivative (0.36 min-1) slightly exceeds the value measured for chloropropionyl-CoA (0.31 min-1). These observations support the intermediacy of acrylyl-CoA in the chloropropionyl-CoA-dependent inactivation of hydroxymethylglutaryl-CoA synthase. Inhibition of fatty acid synthase by chloropropionyl-CoA is primarily due to alkylation of a reactive cysteine, although secondary reaction with the enzyme's pantetheinyl sulfhydryl occurs. Modification of fatty acid synthase by S-acrylyl-N-acetylcysteamine occurs at a limiting rate (1.8 min-1) that is comparable to that estimated for chloropropionyl-CoA-dependent inactivation. However, this enzyme lacks the ability to deprotonate C2 of an acyl group such as the chloropropionyl moiety. Since such a step would be required to generate an acrylyl group from chloropropionyl-S-enzyme, it is likely that a typical affinity labeling process accounts for inactivation of fatty acid synthase by chloropropionyl-CoA. HMG-CoA lyase is also inhibited by S-acrylyl-N-acetylcysteamine. In contrast to the ability of this reagent to serve as a mechanism-based inhibitor of hydroxymethylglutaryl-CoA synthase and an affinity label of fatty acid synthase, it acts as a group-specific reagent in modifying HMG-CoA lyase (kappa 2 = 86.7 M-1 min-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号