首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In liver mitochondria isolated from hypothyroid rats, the rate of ATP synthesis is lower than in mitochondria from normal rats. Oligomycin-sensitive ATP hydrolase activity and passive proton permeability were significantly lower in submitochondrial particles from hypothyroid rats compared to those isolated from normal rats. In mitochondria from hypothyroid rats, the changes in catalytic activities of F0F1-ATP synthase are accompanied by a decrease in the amount of immunodetected -F1, F01-PVP, and OSCP subunits of the complex. Northern blot hybridization shows a decrease in the relative cytosolic content of mRNA for -F1 subunit in liver of hypothyroid rats. Administration of 3,5,3-triodo-L-thyronine to the hypothyroid rats tends to remedy the functional and structural defects of F0F1-ATP synthase observed in the hypothyroid rats. The results obtained indicate that hypothyroidism leads to a decreased expression of F0F1-ATP synthase complex in liver mitochondria and this contributes to the decrease of the efficiency of oxidative phosphorylation.  相似文献   

2.
The most commonly quoted mechanism of the coupling between the electrochemical proton gradient and the formation of ATP from ADP and Pi assumes that all states of the F1 portion of the ATP synthase have subunits in tight, loose, and open conformations. Models based on this assumption are inconsistent with some of the available experimental evidence. A mechanism that includes an additional subunit conformation, closed, observed in the rat liver structure overcomes these difficulties.  相似文献   

3.
The structural and functional connection between the peripheral catalytic F1 sector and theproton-translocating membrane sector F0 of the mitochondrial ATP synthase is reviewed. Theobservations examined show that the N-terminus of subunit , the carboxy-terminal and centralregion of F0I-PVP(b), OSCP, and part of subunit d constitute a continuous structure, the lateralstalk, which connects the peripheries of F1 to F0 and surrounds the central element of thestalk, constituted by subunits and . The ATPase inhibitor protein (IF1) binds at one sideof the F1F0 connection. The carboxy-terminal segment of IF1 apparently binds to OSCP. The42L-58K segment of IF1, which is per se the most active domain of the protein, binds at thesurface of one of the three / pairs of F1, thus preventing the cyclic interconversion of thecatalytic sites required for ATP hydrolysis.  相似文献   

4.
A rapid procedure is described for the separation of CMP-sialic acid:lactosylceramide sialyltransferase reaction components using Sep Pak C18 cartridges. The quantitative separation of the more polar nucleotide sugar, CMP-sialic acid, and its free acid from the less polar GM3-ganglioside is simple and rapid relative to previously described methods. Recovery of GM3 is optimized by the addition of phosphatidylcholine to the reaction mixture prior to the chromatographic step. Using rat liver Golgi membranes as a source of CMP-sialic acid: lactosylceramide sialyltransferase activity (GM3 synthase; ST-1), the transfer of [14C] sialic acid from CMP-[14C] sialic acid to lactosylceramide can be quantified by this assay. The procedure is reliable and may be applicable to the isolation of ganglioside products in otherin vitro glycosyltransferase assays.Abbreviations GM3 GM3-ganglioside - II3NeuAc-LacCer NeuAc2-3Gal1-4Glc1-1Cer - GD1a GD1a-ganglioside, IV3NeuAc, II3NeuAc-GgOse4Cer, NeuAc2-3Gal1-3GalNac1-4(NeuAc2-3)Gal1-4Glc1-1Cer - GD3 GD3-ganglioside, II3(NeuAc)2LacCer, NeuAc2-8NeuAc2-3Gal1-4Glc1-1Cer - GgOse4Cer asialo-GM1 Gal1-3GalNAc1-4Gal1-4Glc1-1Cer - FucGMI fucosyl-GMI-ganglioside, Fuc1-2Gal1-3GalNAc1-4Gal1-4 Glc1-1Cer - ST-1 GM3 synthase, CMP-sialic acid:lactosylceramide sialyltransferase - LacCer lactosylceramide, Gal1-4Glc1-1Cer - CMP-NeuAc cytidine 5-monophospho-N-acetylneuraminic acid - PC phosphatidylcholine - PMSF phenylmethylsulfonyl fluoride  相似文献   

5.
The structure of theEscherichia coli ATP synthase has been studied by electron microscopy and a model developed in which the and subunits of the F1 part are arranged hexagonally (in top view) alternating with one another and surrounding a central cavity of around 35 Å at its widest point. The and subunits are interdigitated in side view for around 60 Å of the 90 Å length of the molecule. The F1 narrows and has three-fold symmetry at the end furthest from the F0 part. The F1 is linked to F0 by a stalk approximately 45 Å long and 25–30 Å in diameter. The F0 part is mostly buried in the lipid bilayer. The subunit provides a domain that extends into the central cavity of the F1 part. The and subunits are in a different conformation when ATP+Mg2+ are present in catalytic sites than when ATP+EDTA are present. This is consistent with these two small subunits switching conformations as a function of whether or not phosphate is bound to the enzyme at the position of the phosphate of ATP. We suggest that this switching is the key to the coupling of catalytic site events with proton translocation in the F0 part of the complex.  相似文献   

6.
Exchange-out of amide tritium from labeled -subunit of 33 complex of F0F1-ATP synthase was not accelerated by ATP, suggesting that hemagglutinin-type transition of coiled-coil structure did not occur in -subunit. Local topology of nucleotide binding site and switch II region of G-protein resemble those of F1- subunit and other proteins which catalyze ATP-triggered reactions. Probably, binding of nucleotide to F0F1-ATP synthase induces conformational change of the switch II-like region with transforming subunit structure from open to closed form and this transformation results in loss of hydrogen bonds with the subunit, thus enabling the subunit to move.  相似文献   

7.
The mitochondrial F1-ATPase inhibitor protein, IF1, binds to subunits of the F1-ATPase bothin vitro andin situ under nonenergizing conditions, i.e., under conditions that allow a net hydrolysis of ATP by the mitochondrial ATPase to take place. This reversible IF1 binding occurs in a wide variety of cell types including (anaerobic) baker's yeast cells and (ischemic) mammalian cardiomyocytes under conditions that limit oxidative phosphorylation. The binding of inhibitor results in a marked slowing of ATP hydrolysis by the undriven mitochondrial ATP synthase. An apparent main function of this reversible IF1 binding, at least in cells that undergo aerobic-anaerobic switching, is the mitigation of a wasteful hydrolysis of ATP produced by glycolysis during anoxic or ischemic intervals, by the mitochondrial ATPase. While this apparent main function is probably of considerable importance in cells that normally either can or must undergo aerobic-anaerobic switching such as baker's yeast cells and skeletal myocytes, one wonders why a full complement of IF1 has been retained in certain cells that normally do not undergo such aerobic-anaerobic switching, cells such as adult mammalian cardiomyocytes of many species. While some mammalian species have, indeed, not retained a functional complement of IF1 in their cardiomyocytes, those that have can benefit significantly from its presence during intervals of myocardial ischemia.This mini-review is dedicated to the memory of Professor Efraim Racker.  相似文献   

8.
Monoclonal and polyclonal antibodies directed against peptides of F1-ATPase or F1F0-ATPase synthase provide new and efficient tools to study structure-function relationships and mechanisms of such complex membrane enzymes. This review summarizes the main results obtained using this approach. Antibodies have permitted the determination of the nature of subunits involved in the complex, their stoichiometry, their organization, neighboring interactions, and vectorial distribution within or on either face of the membrane. Moreover, in a few cases, amino acid sequences exposed on a face of the membrane or buried inside the complex have been identified. Antibodies are very useful for detecting the role of each subunit, especially for those subunits which appear to have no direct involvement in the catalytic mechanism. Concerning the mechanisms, the availability of monoclonal antibodies which inhibit (or activate) ATP hydrolysis or ATP synthesis, which modify nucleotide binding or regulation of activities, which detect specific conformations, etc. brings many new ways of understanding the precise functions. The specific recognition by monoclonal antibodies on the subunit of epitopes in the proximity of, or in the catalytic site, gives information on this site. The use of anti- monoclonal antibodies has shown asymmetry of in the complex as already shown for . In addition, the involvement of with respect to nucleotide site cooperativity has been detected. Finally, the formation of F1F0-antibody complexes of various masses, seems to exclude the functional rotation of F1 around F0 during catalysis.Abbreviations IF1 natural protein inhibitor of the ATPase-ATP synthase - OSCP oligomycin sensitivity-conferring protein - DCCD dicyclohexylcarbodiimide - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoreses - F1 F1-ATPase, coupling factor F1 of ATPase - F1F0 F1F0-ATP synthase, ATPase-ATP synthase complex  相似文献   

9.
The effect of ATP on the fluorescence intensity of bovine heart F1-adenosinetriphosphatase labeled at its essential Lys with 7-chloro-4-nitro-2,1,3-benzoxadiazole (N-NBD-F1) has been examined in solutions containing different concentrations of ADP. The fluorescence of N-NBD-F1 is unaffected by ATP in the absence of ADP. But when increasing amounts of ATP are added to a solution of N-NBD-F1 containing 0.37 or 1.0 mM ADP, the fluorescence of N-NBD-F1 first decreases and then increases continually as the concentration of ATP is further raised. Parallel measurements of the suppression of the fluorescence of N-NBD-F1 and the inhibition of the ATPase activity of the unlabeled enzyme by ADP in the presence of ATP show a quantitative correlation between the changes in fluorescence and in ATPase activity. The data are consistent with the model for F1-ATPase with one principal catalytic subunit for ATP hydrolysis and synthesis, and two auxiliary subunits which control the conformation and hence the catalytic activity of through interaction between all the subunits.  相似文献   

10.
A great deal of progress has been made in understanding both the structure and the mechanism of F1-ATPase. The primary structure is now fully known for at least five species. Sequence comparison between chloroplast, photobacteria, aerobic bacteria, and mitochondrial representatives allow us to infer more general functional relationships and evolutionary trends. Although the F1 moiety is the most studied segment of the H+-ATPase complex, there is not a full understanding of the mechanism and regulation of its hydrolytic activity. The subunit is now known to contain one and probably two nucleotide binding domains, one of which is believed to be a catalytic site. Recently, two similar models have been proposed to attempt to describe the active part of the subunits. These models are mainly an attempt to use the structure of adenylate kinase to represent a more general working model for nucleotide binding phosphotransferases. Labelling experiments seem to indicate that several critical residues outside the region described by the adenylate kinase part of this model are also actively involved in the ATPase activity. New models will have to be introduced to include these regions. Finally, it seems that a consensus has been reached with regard to a broad acceptance of the asymmetric structure of the F1-moiety. In addition, recent experimental evidence points toward the presence of nonequivalent subunits to describe the functional activity of the F1-ATPase. A summary diagram of the conformational and binding states of the enzyme including the nonequivalent subunit is presented. Additional research is essential to establish the role of the minor subunits—and of the asymmetry they introduce in F1—on the physiological function of the enzyme.  相似文献   

11.
The action of thyroid hormones on the expression of the mitochondrial ATP synthase -subunit gene (ATPsyn) is controversial. We detected a binding site for the thyroid hormone receptor between-366 and-380 in the human ATPsyn gene by DNase I footprint analysis and band-shift assays. However, expression vectors in which the chloramphenicol acetyl transferase (CAT) reporter gene is driven by the 5 upstream region of ATPsyn gene were unresponsive to T3 when transiently transfected to HepG2 or GH4C1 cells. CAT constructs driven by the rat phosphoenolpyruvate carboxykinase (PEPCK) or the growth hormone (GH) promoters were stimulated several fold by T3 in parallel experiments. It is proposed that the biological effects of thyroid hormones on the ATPsyn expression occur through indirect mechanisms.  相似文献   

12.
We present evidence for a unique covalent modification of a nuclear-encoded precursor protein targeted to plant mitochondria. We investigated the early events of in vitro import for the mitochondrial precursor of the ATP synthase F1 subunit from Nicotiana plumbaginifolia (pF1) into plant mitochondria. When pF1 of 59 kDa was incubated with mitochondria isolated from different higher-plant species, a band of 61 kDa was generated. The 61 kDa protein was a covalently modified form of the 59 kDa pF1. The modification was dependent on the 25 amino acid long N-terminal region of the presequence of pF1. The modification was catalysed by an enzyme located in the outer mitochondrial membrane which was specific for higher plants and could not be washed off from the membrane by urea, KCl or EDTA. The modification was ATP- and Ca2+-dependent, but it was not affected by inhibitors of protein kinases. No inhibition of the modification was observed with phosphatase, methylation or acylation inhibitors. The modification occurs prior to translocation through the mitochondrial outer membrane. Inhibition of the modification process does not affect the import of the precursor protein, hence precursor modification was not a prerequisite for import. Both the modified and the unmodified pF1 proteins were strongly associated with the mitochondrial outer membrane.  相似文献   

13.
The chloroplast coupling factor (CF1) was dissociated into subunits by the freezing-thawing procedure in the presence of 0.5 M NaBr and the subunit was purified by ion-exchange chromatography on a DEAE-cellulose column. The subunit did not catalyze ATP hydrolysis either in the presence or in the absence of reagents known to activate Mg2+-dependent ATPase activity of CF1. However, it manifested appreciable adenylate kinase-like and ATP-ADP -phosphate exchange activities. The adenylate kinase-like activity only slightly depended on Mg2+ ions. Ethanol, and especially diadenosine pentaphosphate, inhibited the reaction effectively. In contrast, the ATP-ADP exchange activity was Mg2+-dependent. Ethanol and diadenosine pentaphosphate were poor inhibitors. Sulfite, the CF1-ATPase activator, and quercetin, its inhibitor, had a minor effect on catalytic activity of the subunit.Abbreviations CF chloroplast coupling factor 1 - RBP carboxylase-ribulose-1,5-bisphosphate carboxylase - TLC thin layer chromatography - MES morpholinoethane sulfonic acid - PMSF phenylmethylsulfonyl fluoride - AP5A diadenosine pentaphosphate, P1, P5-bis(5-adenosyl)pentaphosphate - DCCD N1N-dicyclohexylcarbodiimide - SDS sodium dodecylsulfate - PAAG polyacrylamide gel  相似文献   

14.
ATP-dependent, azide-sensitive rotation of the subunit relative to the 33 hexagonal ring of ATP synthase was observed with a single molecule imaging system. Thus, ATP synthase is a rotary motor enzyme, the first ever found.  相似文献   

15.
Schemes are proposed for coupling sequential opening and closing the three catalytic sites of F1 to rotation of the subunit during ATP synthesis and hydrolysis catalyzed by the FoF1-ATP synthase. A prominent feature of the proposed mechanisms is that the transition state during ATP synthesis is formed when a catalytic site is in the process of closing and that the transition state during ATP hydrolysis is formed when a catalytic site is in the process of opening. The unusual kinetics of formation of Mg-ADP—fluoroaluminate complexes in one or two catalytic sites of nucleotide-depleted MF1 and wild-type and mutant 33 subcomplexes of TF1 are also reviewed. From these considerations, it is concluded that Mg-ADP—fluoroaluminate complexes formed at catalytic sites of isolated F1-ATPases or F1 in membrane-bound FoF1 are ground-state analogs.  相似文献   

16.
ATP synthase (FoF1) consists of F1 (ATP-driven motor) and Fo (H+-driven motor). F1 is a complex of 33 subunits, and is the rotating cam in 33. Thermophilic F1 (TF1) is exceptional in that it can be crystallized as a monomer and an 33 oligomer, and it is sufficiently stable to allow refolding and reassembly of hybrid complexes containing 1, 2, and 3 modified or . The nucleotide-dependent open–close conversion of conformation is an inherent property of an isolated and energy and signals are transferred through / interfaces. The catalytic and noncatalytic interfaces of both mitochondrial F1 (MF1) and TF1 were analyzed by an atom search within the limits of 0.40 nm across the interfaces. Seven (plus thermophilic loop in TF1) contact areas are located at both the catalytic and noncatalytic interfaces on the open form. The number of contact areas on closed increased to 11 and 9, respectively, in the catalytic and noncatalytic interfaces. The interfaces in the barrel domain are immobile. The torsional elastic strain applied through the mobile areas is concentrated in hinge residues and the P-loop in . The notion of elastic energy in FoF1 has been revised. X-ray crystallography of F1 is a static snap shot of one state and the elastic hypotheses are still inconsistent with the structure, dyamics, and kinetics of FoF1. The domain motion and elastic energy in FoF1 will be elucidated by time-resolved crystallography.  相似文献   

17.
Recent studies of chemically modified F1-ATPases have provided new information that requires a revision of our thinking on their catalytic mechanism. One of the subunits in F1-ATPase is distinguishable from the other two both structurally and functionally. The catalytic site and regulatory site of the same subunit are probably sufficiently close to each other, and the interaction between the various catalytic and regulatory sites are probably sufficiently strong to raise the uni-site rate of ATP hydrolysis by several orders of magnitude to that of promoted (multi-site) ATP hydrolysis. Although all three subunits in F1 possess weak uni-site ATPase activity, only one of them () catalyzes promoted ATP hydrolysis. But all three subunits catalyze ATP synthesis driven by the proton flux. Internal rotation of the 33 or 3 moiety relative to the remainder of the F0F1 complex did not occur during oxidative phosphorylation by reconstituted submitochondrial particles.  相似文献   

18.
Endo--N-acetylglucosaminidase F (endo F, EC 3.2.1.96) and peptide:N-glycosidase F (PNGase F, EC 3.2.2.18) fromFlavobacterium meningosepticum were used for the deglycosylation of 1-proteinase inhibitor and 1-acid glycoprotein carrying oligosaccharide side chains of the complex-, high-mannose- and hybrid-type. High-mannose-and hybrid-type glycoproteins were obtained by the incubation of rat hepatocyte primary cultures with 1-deoxymannojirimycin or swainsonine, respectively. It was found that endo F cleaves hybrid- and high-mannose-type 1-proteinase inhibitor and 1-acid glycoprotein at pH 4.5 as well as at pH 8.5 in the presence or absence of 1% octyl--d-glucopyranoside. Complex-type 1-proteinase inhibitor or 1-acid glycoprotein were not cleaved by endo F even in the presence of octyl--d-glucopyranoside.PNGase F was found to cleave complex-, hybrid- and high-mannose-type oligosaccharide side chains of 1-proteinase inhibitor and 1-acid glycoprotein at pH 4.5 and pH 8.5 in the presence of 0.75% octyl--d-glucopyranoside. The deglycosylation of both protein substrates was very poor without detergents.Abbreviations Endo F endo--N-acetylglucosaminidase F (EC 3.2.1.96) - PNGase F peptide:N-glycosidase F (EC 3.2.2.18) Dedicated to Prof. Dr. Wolfgang Gerok on the occasion of his 60th birthday  相似文献   

19.
An updated topological model is constructed for the catalytic nucleotide-binding site of the F1-ATPase. The model is based on analogies to the known structures of the MgATP site on adenylate kinase and the guanine nucleotide sites on elongation factor Tu (Ef-Tu) and theras p21 protein. Recent studies of these known nucleotide-binding domains have revealed several common functional features and similar alignment of nucleotide in their binding folds, and these are used as a framework for evaluating results of affinity labeling and mutagenesis studies of the subunit of F1. Several potentially important residues on are noted that have not yet been studied by mutagenesis or affinity labeling.  相似文献   

20.
The catalytic transition state of ATP synthase has been characterized and modeled by combined use of (1) Mg-ADP–fluoroaluminate, Mg-ADP–fluoroscandium, and corresponding Mg-IDP–fluorometals as transition-state analogs; (2) fluorescence signals of -Trp331 and -Trp148 as optical probes to assess formation of the transition state; (3) mutations of critical catalytic residues to determine side-chain ligands required to stabilize the transition state. Rate acceleration by positive catalytic site cooperativity is explained as due to mobility of -Arg376, acting as an arginine finger residue, which interacts with nucleotide specifically at the transition state step of catalysis, not with Mg-ATP- or Mg-ADP-bound ground states. We speculate that formation and collapse of the transition state may engender catalytic site / subunit-interface conformational movement, which is linked to -subunit rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号