首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin binding EGF-like growth factor (HB-EGF), encoded by the Hegfl gene, is considered as an important mediator of embryo-uterine interactions during implantation in mice. However, it is unknown whether HB-EGF is important for implantation in species with different steroid hormonal requirements. In mice and rats, maternal ovarian estrogen and progesterone (P(4)) are essential to implantation. In contrast, blastocyst implantation can occur in hamsters in the presence of P(4) alone. To ascertain whether HB-EGF plays any role in implantation in hamsters, we examined the expression, regulation and signaling of HB-EGF in the hamster embryo and uterus during the periimplantation period. We demonstrate that both the blastocyst and uterus express HB-EGF during implantation. Hegfl is expressed solely in the uterine luminal epithelium surrounding the blastocyst prior to and during the initiation of implantation. Hypophysectomized P(4)-treated pregnant hamsters also showed a similar pattern of implantation-specific Hegfl expression. These results suggest that uterine Hegfl expression at the implantation site is driven by either signals emanating from the blastocyst or maternal P(4), but not by maternal estrogen. However, in ovariectomized hamsters, uterine induction of Hegfl requires the presence of estrogen and activation of its nuclear receptor (ER), but not P(4). This observation suggests an intriguing possibility that an estrogenic or unidentified signal from the blastocyst is the trigger for uterine HB-EGF expression. An auto-induction of Hegfl in the uterus by blastocyst-derived HB-EGF is also a possibility. We further observed that HB-EGF induces autophosphorylation of ErbB1 and ErbB4 in the uterus and blastocyst. Taken together, we propose that HB-EGF production and signaling by the blastocyst and uterus orchestrate the 'two-way' molecular signaling to initiate the process of implantation in hamsters.  相似文献   

2.
The initiation of blastocyst implantation in the rat is indicated by localized increases in endometrial vascular permeability at the sites where blastocysts are present. The concentrations of 6-keto-prostaglandin F (6-keto-PGF), a stable metabolite of prostaglandin I2 (PGI2), were measured by gas chromatography-mass spectrometry in the areas of increased endometrial vascular permeability (uterine dye sites), and compared with those in the remainder of the uterus (uterine non-dye sites). For rats killed either on the evening of Day 5 of pregnancy or on the morning of Day 6, measurable amounts of 6-keto-PGF were found in the dye sites of all animals, whereas 1 of 6 and 4 of 6 rats killed on Days 5 and 6, respectively, had undetectable amounts (< 1 ng) in non-dye site tissue. It was estimated that, on average, the concentration of 6-keto-PGF in dye sites on the evening of Day 5 is at least 40-fold that in non-dye sites. The possible role of PGI2 in the initiation of blastocyst implantation is discussed.  相似文献   

3.
In a previous study, high nuclear estrogen receptor concentrations in the preoptic area (POA) were found on Day 16 of pregnancy to prime females to respond to a subsequent low dose of estradiol benzoate (EB) after hysterectomy-ovariectomy by exhibiting maternal behavior in 48 hr. Receptor concentrations in the POA were found to be higher than those in the hypothalamus (HYP). The present study investigated when nuclear estrogen receptors increase during pregnancy in POA and when the difference in receptor concentrations between POA and HYP occurs. An attempt was made to reproduce these pregnancy changes with a 16-day treatment of estrogen and progesterone in ovariectomized (OVX), nulliparous rats. In Experiment 1, we measured cytosol and nuclear estrogen receptor concentrations in the POA and HYP of female rats during pregnancy. Nuclear receptor concentrations in the POA increased beginning on Day 10, increased again on Day 16, and continued at this high level for the remainder of pregnancy. Nuclear estrogen receptor concentrations in the HYP remained at a lower level throughout most of pregnancy until Day 22 when they increased significantly. In Experiment 2, we tested the maternal behavior and measured estrogen receptor concentrations in OVX, steroid-primed, nulliparous rats after hysterectomy (H) and EB treatment. While 90% of estradiol (E) + progesterone (P)-primed females displayed short-latency maternal behavior 48 hr after H and EB treatment, 46% of E + vehicle (V)-treated controls were maternal. At 0 hr (prior to H and EB treatment), there was a significantly larger nuclear receptor accumulation in the POA but significantly attenuated receptor binding in the HYP. P treatment significantly affected cytosol and nuclear estrogen receptor dynamics. Differences in nuclear estrogen receptor concentrations were shown to be based on the number of available binding sites and not to changes in receptor affinity for estradiol.  相似文献   

4.
The aim of this study was to examine the expression and regulation of peroxisome proliferator-activated receptor (PPAR) PPARdelta gene in mouse uterus during early pregnancy by in situ hybridization and immunohistochemistry. PPARdelta expression under pseudopregnancy, delayed implantation, hormonal treatment, and artificial decidualization was also investigated. There was a very low level of PPARdelta expression on days 1-4 of pregnancy. On day 5 when embryo implanted, PPARdelta expression was exclusively observed in the subluminal stroma surrounding the implanting blastocyst. No corresponding signals were seen in the uterus on day 5 of pregnancy. There was no detectable PPARdelta signal under delayed implantation. Once delayed implantation was terminated by estrogen treatment and embryo implanted, a strong level of PPARdelta expression was induced in the subluminal stroma surrounding the implanting blastocyst. Estrogen treatment induced a moderate level of PPARdelta expression in the glandular epithelium, while progesterone treatment had no effects in the ovariectomized mice. A strong level of PPARdelta expression was seen in the decidua on days 6-8 of pregnancy. PPARdelta expression was also induced under artificial decidualization. These data suggest that PPARdelta expression at implantation sites require the presence of an active blastocyst and may play an essential role for blastocyst implantation.  相似文献   

5.
6.
7.
Serum progesterone and uterine levels of diamine oxidase (DAO) activity were determined during pregnancy in hamsters. Progesterone was elevated on Day 1 of pregnancy, had a transient peak on Day 5, remained relatively constant on Days 6–10, and then increased on Days 13 and 14. Uterine DAO activity could not be detected until Day 7 of pregnancy, approximately 1 12 days after the initiation of implantation. DAO activity was associated with placental tissue, and more than 90% of the activity was localized in the maternal placenta. The temporal relationship between changes in serum concentrations of progesterone and uterine levels of DAO activity following PG administration also was studied. Serum progesterone was significantly depressed by 6 hr after treatment with PGs on Day 7 of pregnancy. However, uterine levels of DAO activity at 6 hr in the treated animals were not different from those in control animals. In contrast, both the serum progesterone concentrations and uterine levels of DAO activity were significantly lower at 24 hr after PG treatment. The effects of PG treatment on uterine DAO activity were completely blocked by concomitant administration of progesterone. However, concomitant administration of Provera® only blocked the effect of one PG analog that was tested (9-deoxo-9-methylene-16,16-dimethyl0-PGE2). The data indicate that changes in uterine DAO activity following treatment with the PGs used here are primarily a consequence of a decrease in peripheral progesterone (i.e. a luteolytic effect of the PG).  相似文献   

8.
Reduced litter sizes in mice missing pentraxin 3 (Ptx3) have been attributed to fertilization failure. However, our global gene expression studies showed high uterine Ptx3 expression at the implantation site in mice, suggesting its role in blastocyst implantation. We initiated molecular and genetic studies in mice to explore the importance of uterine Ptx3 in this process. We found that Ptx3 is expressed in a unique and transient fashion at implantation sites. With the initiation of implantation on midnight of Day 4 of pregnancy, Ptx3 is expressed exclusively in stromal cells at the site of blastocysts. On Day 5, its expression is more intense in decidualizing stromal cells, but it disappears on Day 6. The expression again becomes evident in the deciduum on Day 7, followed by a more robust expression on Day 8, particularly at the antimesometrial pole. From Day 9, with the initiation of placentation, Ptx3 expression becomes undetectable. These results suggest a role for PTX3 in implantation and decidualization. Indeed, deletion of Ptx3 results in both compromised implantation and decidualization. Interleukin 1B (IL1B), a known inducer of Ptx3, is also transiently expressed in stromal cells at the implantation site, suggesting that IL1B is an inducer of uterine Ptx3 expression. In fact, uterine Ptx3 expression follows that of Il1b induced by lipopolysaccharide treatment on Day 7 of pregnancy. Collectively, these findings provide evidence for an important role for PTX3 in implantation and decidualization. This study has clinical implications, since PTX3 is expressed in the receptive endometrium, and trophoblast cells influence decidual Ptx3 expression in humans.  相似文献   

9.
Prostaglandins (PGs) appear to have a role in the appearance of the increased uterine vascular permeability and subsequent decidualization observed at implantation in many species. However, the sites of production of these PGs have not been clearly established. To clarify the PG synthetic capacity of the blastocyst and the various types of cells in the uterus at implantation, we have studied the immunohistochemical localization of PG synthase in the rat blastocyst on Days 5 to 7 and uterus on Days 1, 4, 5, 6, and 7 of pregnancy. Labeling of PG synthase was negligible in the uterus on Day 1 of pregnancy. On Day 4, there was increased labeling in the luminal and glandular epithelium, in stromal cells adjacent to the luminal epithelium, and in blood vessels and some leukocytes. PG synthase was detected in the blastocysts on Days 5 to 7, but there was a gradual loss of label in the luminal and glandular epithelial cells during this period. Early differentiating stromal cells adjacent to the luminal epithelium in the implantation site on Day 5 showed bright labeling, whereas peripheral stromal cells were only slightly labeled. By Day 7, the differentiated cells of the primary decidual zone showed little or no label, but cells in the secondary decidual zone were brightly labeled. These results indicate that PG synthase is present in the rat blastocyst and in several kinds of uterine cells, and that its localization in uterine cells changed markedly during the implantation process.  相似文献   

10.
Certain uterine prostaglandins (PGs) are elevated at implantation sites and are needed to trigger the events of blastocyst implantation that include blastocyst-uterine attachment and stromal decidualization with vascular permeability changes. Several decades of investigations showed that treatment with PG synthesis inhibitors, prior to or during the time of implantation, resulted in either complete inhibition or a delay in implantation or reduction in the number of implantation sites with diminished decidual tissue. Consistent with these findings, we observed that whereas a selective PG endoperoxide synthase (Ptgs) 1 inhibitor SC-560 failed to inhibit implantation, a selective Ptgs2 inhibitor SC-236 showed significantly reduced number and size of implantation sites in progesterone-treated ovariectomized pregnant hamsters. It is known that Ptgs2 expression and Ptgs2-derived prostacyclin (PGI2) synthesis at implantation sites are needed for implantation in the mouse (a rodent that needs ovarian estrogen for implantation). However, it is unknown which Ptgs and PG synthases produce which PGs at implantation sites of the hamster (a rodent that does not need ovarian estrogen for implantation). Here we demonstrate that as blastocyst implantation proceeds, a reduction in Ptgs1 expression from uterine luminal epithelial cells and a gradual induction in Ptgs2 expression exclusively in luminal epithelial and adjacent decidual cells occurred at implantation sites of hamsters. Results also reveal that PGE2, but not PGI2, is the major PG at implantation sites where Ptgs2 and microsomal type PGE synthases but not PGI synthases are co-expressed. This elevated uterine PGE2 at implantation sites may serve to initiate or amplify physiological signals required for specific aspects of the implantation process in hamsters.  相似文献   

11.
Evidence that prostaglandins are involved in intercellular communication during blastocyst implantation suggested that development and loss of uterine sensitivity to deciduogenic stimuli during early pregnancy might depend upon changes in uterine capacity to mobilize arachidonic acid from phospholipid. We measured levels of arachidonic acid in lipid fractions on Day 6 of pregnancy in uterine segments containing implantation sites, in uterine segments between implantation sites, and in luminal epithelial cells after a deciduogenic stimulus. Arachidonic acid in uterine phospholipid was depleted at implantation sites. With an intrauterine deciduogenic stimulus of hormonally primed ovariectomized rat uteri, the arachidonic acid content of the luminal epithelium decreased. When the fatty acid composition of the luminal epithelium was examined during pseudopregnancy and after progestin-estrogen treatment, however, no changes in arachidonic acid composition and content were observed. These data suggest that during blastocyst implantation, luminal epithelial cells at implantation sites mobilize arachidonic acid from phospholipid for prostaglandin synthesis, but that uterine sensitivity and the capacity to synthesize prostaglandins in response to the blastocyst does not depend upon changes in arachidonic acid levels in uterine phospholipid.  相似文献   

12.
The rate of estrone (E1)----estradiol-17 beta (E2) or E2----E1 conversion catalyzed by 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity was determined for each mouse embryo in modified F-10 medium containing 0.95 microM 3H-E1 or 3H-E2. During delayed implantation, the E1----E2 conversion rate was decreased (p less than 0.005) from 5.69 +/- 0.34 fmol/h/blastocyst on Day 5 to 3.50 +/- 0.46 fmol/h/blastocyst on Day 9, whereas E2----E1 was increased (p less than 0.005) from 7.44 +/- 1.08 to 18.60 +/- 2.04 fmol/h/blastocyst. After estrogen injection, the Day 9 implanting blastocyst showed an increase (p less than 0.005) in E1----E2 conversion to 9.05 +/- 0.64 fmol/h/blastocyst but a slight, insignificant decrease in E2----E1 conversion to 14.2 +/- 1.82 fmol/h/blastocyst. A similar trend was also observed in Day 5 implanting blastocysts when compared to Day 5 delayed blastocysts. Thus, 17 beta-HSD activity in delayed blastocysts favors E2----E1 over E1----E2 conversion in a ratio of 5:1. After estrogen induction of implantation, the E1----E2 conversion rate is stimulated and the ratio of E2----E1 to E1----E2 rate is decreased to 1.5:1. The results suggest that 17 beta-HSD activity may be involved in blastocyst implantation.  相似文献   

13.
14.
Estradiol is a potential candidate for the blastocyst signal responsible for maternal recognition of pregnancy in the llama (Lama glama). Two experiments were conducted to determine if the llama blastocyst produces estradiol during the presumed period of maternal recognition of pregnancy and if exogenous estradiol can extend the luteal phase. In Experiment 1, llamas were superovulated with eCG and mated 7 days later (Day 0=day of mating). Blastocysts were collected nonsurgically on Days 7, 9, or 11 or at necropsy on Days 13 and 15 post-mating and cultured for 48h. Conditioned medium was recovered, replaced with fresh medium at 24-h intervals, and assayed for estradiol-17beta. Estradiol production (pg/blastocyst) over the 48-h culture increased (P<0.05) by day of gestation where more estradiol (P<0.05) was produced by Day 11 compared to Day 7 blastocysts, Day 13 compared to Days 7-11 blastocysts, and Day 15 compared to Days 7-13 blastocysts. A dramatic increase was observed between Days 11 and 13 when estradiol production by Day 13 blastocysts increased (P<0.05) more than 50-fold. In Experiment 2, 30 females were induced to ovulate with hCG (Day 0=day of hCG injection). Starting on Day 7 and continuing through Day 15, animals received daily injections i.m. of 0 (n=11), 5 (n=7), or 10mg (n=12) estradiol benzoate (EB) dissolved in isopropylmyristate. Sera were collected immediately prior to each injection and on Days 16, 17, 18, 20, and 22 and analyzed for progesterone. Progesterone concentrations were greater (P<0.05) on Days 14, 15, 16, and 17 in llamas treated with 10mg EB compared to llamas treated with 0mg EB. These results demonstrate that llama blastocysts produce estradiol and exogenous estradiol can enhance and transiently extend luteal progesterone production. Estradiol produced by the preimplantation llama blastocyst may play a role in maternal recognition of pregnancy and early luteal support.  相似文献   

15.
16.
Mouse uteri were examined during estrus, early pregnancy, the peri-implantation period, and delayed implantation to determine whether changes in the surface coat of the luminal epithelium could be associated with receptivity of the uterus to the presence of blastocyst-stage embryos or blastocyst adhesion. By using alkaline bismuth subnitrate to label periodate-oxidized glycols within the glycocalyx we were able to measure the thickness and examine the morphology of the glycocalyx by electron microscopy. Ferritin-conjugated Ricinus communis agglutinin (RCA-I) demonstrated the presence of D-galactose at terminal, nonreducing positions within the glycocalyx. A relatively thick (0.06-0.1-micron) surface coat was present during estrus, but contained almost no RCA-I binding sites. During Day 3 of pregnancy the surface coat remained up to 0.1 micron thick and RCA-I binding sites were present. At Day 4 and during delay the glycocalyx had a fibrillar appearance, contained RCA-I binding sites, and was reduced to 0.06-0.08 micron in thickness. During Day 5 of pregnancy the thickness of the surface coat was greatly reduced, but there remained uniform lectin binding adjacent to the plasma membrane both at sites of blastocyst attachment and between implantation sites. The results indicate that the luminal epithelium of the mouse uterus acquired RCA-I binding sites during pregnancy and that the thickness of the surface coat was greatly reduced at the time of implantation.  相似文献   

17.
Inhibitors of platelet activation, alprazolam, iloprost and SRI 63-441, were used to demonstrate the necessity of embryo-derived platelet-activating factor (PAF) activity for the establishment of pregnancy in mice. In a splenectomized mouse bioassay 6 micrograms alprazolam inhibited, for 3 h, the thrombocytopenia induced by 0.1 micrograms PAF; 4 micrograms iloprost and 0.5 microgram SRI 63-441 were effective for 6 and 12h respectively. The administration of 2 micrograms iloprost/30 g body weight on Days 1 and 4 of pregnancy and twice daily on Days 2 and 3 caused a 50% reduction (P less than 0.0005) in the number of implantation sites in the uterus at Day 8 of pregnancy, without affecting (P greater than 0.05) the number of corpora lutea. A similar reduction in the number of implantation sites was achieved with 20 micrograms SRI 63-441/30 g body weight/day. The reduction in implantation rate was evident on Day 5 of pregnancy by visualizing the implantation sites with pontamine sky blue. SRI 63-441 had no effect on peripheral blood progesterone concentrations from Day 1 to Day 9 of pregnancy, and did not appear to inhibit implantation by blocking the preimplantation surge of oestradiol. The number and morphology of blastocysts flushed from the uterus of Day 4 inhibitor-treated mice was not different (P greater than 0.05) from the controls. The cleavage rate and morphology of embryos cultured from the 2-cell to blastocyst stage in media containing SRI 63-441 or iloprost (10 micrograms/ml) were normal, precluding a gross toxic effect. Simultaneous administration of 1 microgram PAF-acether to treated animals re-established pregnancy rates to levels not significantly different (P greater than 0.05) from the controls.  相似文献   

18.
Pig blastocysts isolated between Days 10 and 16 of pregnancy release the protease, plasminogen activator (PA), into the medium in a time-dependent manner when cultured in vitro. Production is biphasic. The initial phase (Days 10-12) coincides with the early elongation stages, while release during the second phase (Days 14-16) occurs during a time at which the DNA content of the blastocysts is increasing markedly. Uterine flushings from these pregnant animals contain the zymogen substrate for PA, plasminogen, presumably as a serum transudate. Plasminogen is present in highest amounts at Day 12. The blastocyst, therefore, has the potential ability to generate the broadly specific protease, plasmin, within the uterine lumen. However, during this same period, the endometrium secretes an inhibitor of plasmin into the uterine lumen. In pregnant animals the amount of plasmin inhibitory activity rose 7-fold between Day 10.5, when the blastocysts were spherical, and Day 12, when they had become filamentous. At Day 12 each uterine horn contained about 3 to 4 mg of plasmin inhibitor. A similar release of inhibitor can be initiated in nonpregnant gilts given a single, intramuscular injection of estradiol valerate on Day 11 of the estrous cycle. It is suggested that the initiation of estrogen production by the elongating blastocyst triggers the release of plasmin inhibitor by the maternal endometrium and that the inhibitor serves to prevent a proteolytic cascade of reactions initiated by blastocyst PA, which might otherwise damage the uterine epithelium.  相似文献   

19.
Ergocryptine (ECR) terminated pregnancy in hamsters when administered on Day 5; when ECR was given on Day 6 the response was diminished, and pregnancy continued after ECR treatment on Day 7. The abortifacient action of ECR in Day 5 pregnant hamsters was overcome by exogenous prolactin but not FSH and LH. When sera collected from hamsters on different days of gestation were examined for their ability to neutralize the effect of ECR in Day 5 pregnant hamsters, a peak of luteotrophic activity was observed in sera collected on Days 10 and 11. The results of these studies suggest that in hamsters the role of hypophyseal prolactin in luteal support is diminished by Day 7 of pregnancy, and the appearance of luteotrophic activity in sera collected on Days 10 and 11 may be indicative of a placental luteotrophin.  相似文献   

20.
Prostaglandin E(2) (PGE(2)) is considered important for blastocyst spacing, implantation, and decidualization in rodent uteri. PGE synthase (PGES) catalyzes the isomerization of PGH(2) to PGE(2). Two isoforms of PGES exist: microsomal PGES (mPGES) and cytosolic PGES (cPGES); however, the expression and regulation of cPGES in the mammalian uterus during early pregnancy are still unknown. The aim of this study was to investigate the differential expression of cPGES in mouse uterus during early pregnancy and its regulation under different conditions using in situ hybridization and immunohistochemistry. A strong level of cPGES mRNA signal was exhibited in the stromal cells at the implantation site on Day 5 of pregnancy, whereas cPGES immunostaining was strongly detected in the luminal epithelium. The signals for both cPGES mRNA and immunostaining were strongly detected in the decidualized cells from Days 6-8 of pregnancy. A basal level of cPGES mRNA signal and immunostaining was exhibited in the uterus in delayed implantation. After delayed implantation was terminated by estrogen treatment and embryo implantation was initiated, cPGES mRNA signal was strongly detected in the stroma underlying the luminal epithelium at the implantation site, and cPGES immunostaining was strongly observed in the luminal epithelium surrounding the implanting blastocyst. A strong cPGES mRNA signal and immunostaining were detected in decidualized cells under artificial decidualization, whereas only a basal level of cPGES mRNA signal and immunostaining were observed in the control horn. Our data suggest that cPGES may play an important role during implantation and decidualization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号