首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure for the separation and isolation of the urinary metabolites of quinidine and quinine by reversed-phase high-performance liquid chromatography is described. Nine metabolites of quinidine and eight metabolites of quinine were detected in the urine of male Sprague-Dawley rats after a single dose of quinidine or quinine (50 mg kg?1). Following extraction from urine, the metabolites were separated on either an analytical or a semi-preparative reversed-phase column by gradient elution. After isolation and derivatization, the metabolites were analyzed by gas chromatography and gas chromatography—mass spectrometry.  相似文献   

2.
A simple method for the concurrent analysis of the noradrenaline metabolites vanillylmandelic acid and 3-methoxy-4-hydroxyphenylglycol, the dopamine metabolites dihydroxyphenylacetic acid and homovanillic acid, and the serotonin metabolite 5-hydroxyindoleacetic acid in human urine is described. Following organic extraction of the metabolites from acidified urine, they are separated by single-step gradient elution high-performance liquid chromatography on a reversed-phase column. Detection and quantification are achieved with an electrochemical detector using a carbon-paste electrode; samples can be injected at 40-min intervals. Optimisation of analytical parameters is described, and examples of the application of the method in the fields of clinical chemistry and clinical neuroscience are given. This provides a convenient method for the concurrent study of the metabolism of three major biogenic amines, and is readily adaptable for studies on cerebrospinal fluid and brain tissue.  相似文献   

3.
A reversed-phase HPLC method with fluorescence detection for the quantification of hexafluoroisopropanol (HFIP) in urine is presented. HFIP, a metabolite of the inhalation anesthetic sevoflurane, is excreted mainly in urine as glucuronic acid conjugate. After enzymatic hydrolysis of the glucuronate, primary amino groups of interferent urinary compounds are blocked by reaction with o-phthalic dicarboxaldehyde and 3-mercaptopropionic acid, followed by labeling of HFIP with 9-fluorenylmethyl chloroformate. The derivatization reaction proceeds in a water-acetonitrile (1:1) solution at room temperature with a borate buffer of pH 12.5 as a catalyst. A stable fluorescent derivative of HFIP is formed within 5 min. The HFIP-FMOC derivative is separated by reversed-phase chromatography with isocratic elution on an octadecyl silyl column (33x4.6 mm, 3 microm) and guard column (20x4.0 mm, 40 microm), at 35 degrees C, and detected by fluorescence detection at an excitation wavelength of 265 nm and an emission wavelength of 311 nm. The method detection limit is 40 pg, per 10-microl injection volume, corresponding to 16 microg/l of HFIP in urine. The among-series relative standard deviation is <6% at 200 microg/l (n=6). As a preliminary application, the method was used to detect HFIP concentration in the urine of two volunteers exposed for 3 h to an airborne concentration of sevoflurane in the order of 2 ppm.  相似文献   

4.
A method for the simultaneous determination of de(N-methyl)-N-ethyl-8,9-anhydroerythromycin A 6,9-hemiacetal (EM523, I) and its three metabolites in human plasma and urine has been developed using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection. Plasma and urine samples spiked with erythromycin as an internal standard were extracted with a mixture of dichloromethane and diethyl ether under alkaline conditions. The ortanic layer was evaporated under a stream of nitrogen gas. The reconstituted sample was injected into an HPLC apparatus and separated on an ODS column using a gradient elution method. The elute was reacted on-line with a mixture of tris(2,2′-bipyridine) ruthenium(II) and peroxodisulfate, and the generated CL intensity was detected. Optimization of the CL reaction conditions resulted in a sensitive and stable CL intensity for the determination of I and its metabolites. The recovery of each compound from human plasma and urine, and the sensitivity, linearity, accuracy and precision of the method were satisfactory. The lower limits of quantitation for each compound using 0.2 ml of plasma and 0.1 ml of urine were 1 and 00 ng/ml, respectively. This method has been used for the determination of I in samples from clinical trials.  相似文献   

5.
A sensitive and highly automated high-performance liquid chromatography (HPLC) column-switching method has been developed for the simultaneous determination of the active metabolite III and its prodrug II, both derivatives of the oral platelet inhibitor Ro 48-3657 (I), in plasma and urine of man and dog. Plasma samples were deproteinated with perchloric acid (0.5 M), while urine samples could be processed directly after dilution with phosphate buffer. The prepared samples were injected onto a pre-column of a HPLC column switching system. Polar plasma or urine components were removed by flushing the precolumn with phosphate buffer (0.1 M, pH 3.5). Retained compounds (including II and III) were backflushed onto the analytical column, separated by gradient elution and detected by means of UV detection at 240 nm. The limit of quantification for both compounds was 1 ng/ml (500 μl of plasma) and 25 ng/ml (50 μl of urine) for plasma and urine, respectively. The practicability of the new method was demonstrated by the analysis of about 6000 plasma and 1300 urine samples from various toxicokinetic studies in dogs and phase 1 studies in man.  相似文献   

6.
A simple and highly sensitive method for the determination of beta-phenylethylamine in human plasma is investigated. The method employs high-performance liquid chromatography with fluorescence detection. beta-Phenylethylamine and p-methylbenzylamine (internal standard) in human plasma are isolated by cation-exchange chromatography on a Toyopak SP cartridge and then converted into the corresponding fluorescent derivatives with 3,4-dihydro-6,7-dimethoxy-4-methyl-3-oxoquinoxaline-2-carbonyl chloride, a fluorescence derivatization reagent for amines. The derivatives are separated within 30 min on a reversed-phase column, TSK gel ODS-120T, with isocratic elution, and detected fluorometrically. The detection limit of beta-phenylethylamine is 0.3 pmol/ml in plasma (S/N = 3).  相似文献   

7.
Liquid chromatography (LC) with fluorescence detection is described for simultaneous determination of native fluorescent bioamines (indoleamines and catecholamines). This is based on intramolecular fluorescence resonance energy transfer (FRET) in an LC system following post-column derivatization of native fluorescent bioamines' amino groups with o-phthalaldehyde (OPA). OPA fluorescence was achieved through an intramolecular FRET process when the molecules were excited at maximum excitation wavelength of the native fluorescent bioamines. Bioamines separated by reversed-phase LC on ODS column were derivatized with OPA and 2-mercaptoethanol. This method provides sufficient selectivity and sensitivity for the determination of normetanephrine, dopamine, tyrosine, 5-hydroxytryptamine, tryptamine, and tryptophan in healthy human urine without prior sample purification.  相似文献   

8.
A simple and highly sensitive normal-phase HPLC method is described for determining sertindole concentrations in human plasma using fluorimetric detection. A short C8 column was used to extract sertindole and the internal standard from plasma; the column was rinsed with acetonitrile, and the analytes were recovered by elution with methanol. This uncommon selectivity between the two solvents allowed clean extraction and near- quantitative recovery of the analytes (> 89%). Separation was done on a 5-μm silica-gel column and detection was performed by fluorimetry, with emission at 340 nm and excitation at 260 nm. The detection and lower quantifiable limits were 0.01 and 0.025 ng/ml, respectively, with no interference from plasma or potential metabolites.  相似文献   

9.
A highly sensitive method for the assay of dopamine β-hydroxylase in rat serum and in sample solution prepared from rat adrenal medulla is described which employs high-performance liquid chromatography with fluorescence detection. Octopamine, formed enzymatically from the substrate tyramine, is separated by Dowex 50W-X4 column chromatography and oxidized with periodate to p-hydroxybenzaldehyde, which is then converted into a fluorescent compound with 2,2′-dithiobis(1-aminonaphthalene). The derivative, after extraction with n-hexane—chloroform, is separated by normal-phase chromatography on Alox T. The limit of detection for octopamine formed enzymatically is 10 pmol. This method requires as little as 5 μl of rat serum.  相似文献   

10.
An automated method for the determination of pholcodine in plasma and whole blood is described. The technique combines dialysis and trace enrichment prior to high-performance liquid chromatography. Dialysis, trace enrichment on a weak cation-exchange column, separation on a cyano column and fluorescence detection was shown to be an extremely selective and sensitive method. The method has been used successfully in the analysis of real samples after administration of pholcodine. The automated method can be used, after minor modification, to determine other basic drugs in whole blood and plasma.  相似文献   

11.
Galantamine, an alkaloid isolated from the bulbs and flowers of Caucasian snowdrop (Galanthus woronowii, Amaryllidaceae) and related species, is employed in human medicine for the treatment of various neuromuscular and neurodegenerative diseases. After the administration, the products of oxidative biotransformation (O-desmethyl-galantamine, N-desmethyl-galantamine, galantamine-N-oxide) and chiral conversion (epigalantamine) are formed in various concentrations from parent compound. For the identification and determination of galantamine and its phase I metabolites in blood plasma and tissues, a new bioanalytical method based on a reversed-phase high-performance liquid chromatography with UV photodiode-array, fluorescence and mass spectrometric detection was developed, validated and applied to pharmacokinetic and biotransformation studies. Sample preparation included a homogenization of the rat tissues (liver, brain, hypophysis) in a phosphate buffer 0.05 mol/L pH 7.4. Plasma samples and tissue homogenates were purified using a mixed-mode solid-phase extraction (Waters Oasis MCX cartridges). Galantamine, its above-mentioned metabolites and the internal standard codeine were separated on a Discovery HS F5 column (Supelco, 150 mmx4.6 mm I.D., 5 microm) at flow rate of 1 mL/min using a linear gradient elution. UV photodiode-array and mass spectrometric detection were employed for the identification of individual galantamine metabolites in various biomatrices, the fluorescence detection (lambdaexcit=280 nm/lambdaemiss=310 nm) was chosen for the quantification of galantamine and its metabolites. The developed method was applicable in liver tissue in the range from 0.50 to 63.47 nmol/g of galantamine, from 0.32 to 41.42 nmol/g of O-desmethyl-galantamine, from 0.54 to 69.40 nmol/g of N-desmethyl-galantamine and from 0.70 to 89.03 nmol/g of epigalantamine. Limit of detection was found to be 0.04 nmol/g for galantamine, 0.19 nmol/g for O-desmethyl-galantamine, and 0.07 nmol/g for N-desmethyl-galantamine and epigalantamine.  相似文献   

12.
A highly sensitive and selective method for determining 8-oxoguanine in plasma and urine was developed by high-performance liquid chromatography with electrochemical detection. The compound was separated by gradient elution on a C18 reversed-phase column with a mobile phase of acetonitrile and 0.1 M sodium acetate, pH 5.2. 8-Hydroxy-2′-deoxyguanosine was used as internal standard. 8-Oxoguanine was detected electrochemically by setting the potential to +300 mV vs. Pd reference. The sensitivity of the assay was 22 ng/ml with a signal-to-noise ratio of 7:1. The within-day relative standard deviations for 8-oxoguanine quality control samples with concentrations of 3340, 1340 and 84 ng/ml were 3.6, 4.3 and 5.7% for plasma, and 4.1, 4.6 and 6.2% for urine, respectively. The day-to-day relative standard deviations for the same samples were 3.8, 6.8 and 7.1% for plasma, and 3.9, 7.0 and 7.9% for urine, respectively. The method is designed to study the pharmacokinetics and metabolic fate of O6-benzylguanine in a phase I clinical trial. Previously, O6-benzyl-8-oxoguanine was identified as the primary metabolite of O6-benzylguanine in humans. We now demonstrate that 8-oxoguanine is a further metabolite of O6-benzylguanine.  相似文献   

13.
Enantiomers of salbutamol were directly separated (Rs=1.16) and quantitated at therapeutic concentrations after solid-phase extraction from human plasma and urine by normal-phase high-performance liquid chromatography on a chiral column with fluorescence detection. The assay was linear for each enantiomer between 1.25 and 500 ng ml−1 and had a minimum limit of detection of 250 pg ml−1. A 3-ml plasma or 1-ml urine sample was required for quantitation at therapeutic doses. Inter-day variation was 50% for S-(+)- and 6.5% for R-(−)-salbutamol. The assay was used to compare enantioselective disposition after single doses of racemate by the intravenous, oral and rectal routes.  相似文献   

14.
3-(4-bromophenyl)-5-acetyloxymethyl-2,5-dihydrofuran-2-one (LNO-18-22) is a representative member of a novel group of potential antifungal drugs, derived from a natural 3,5-disubstituted butenolide, (-)incrustoporine, as a lead structure. This lipophilic compound is characterized by high in vitro antifungal activity and low acute toxicity. For the purpose of in vivo studies, a new bioanalytical high-performance liquid chromatographic method with UV photodiode-array and mass spectrometric detection (HPLC-PDA-MS), involving a direct injection of diluted mouse urine was developed and used in the evaluation of the metabolic profiling of this drug candidate. The separation of LNO-18-22 and its phase I metabolites was performed in 37 min on a 125 mmx4 mm chromatographic column with Purospher RP-18e using an acetonitrile-water gradient elution. Scan mode of UV detection (195-380 nm) was employed for the identification of the parent compound and its biotransformation products in the biomatrix. Finally, the identity of LNO-18-22 and its metabolites was confirmed using HPLC-MS analyses of the eluate. These experiments demonstrated the power of a comprehensive analytical approach based on the combination of xenobiochemical methods and the results from tandem HPLC-PDA-MS (chromatographic behaviour, UV and MS spectra of native metabolites versus synthetic standards). The chemical structures of five phase I LNO-18-22 metabolites and one phase II metabolite were elucidated in the mouse urine, with two of these metabolites having very unexpected structures.  相似文献   

15.
The determination of quinine, (3S)-3-hydroxyquinine, 2′-quininone and (10R)- and (10S)-10,11-dihydroxydihydroquinine in plasma and urine samples is described. This is the first time the R and S configurations have been correctly assigned to the two metabolites of 10,11-dihydroxyquinine. One hundred microliter-plasma samples were protein precipitated with 200 μl cold methanol. Urine samples were 10–100× diluted and then directly injected into the HPLC. A reversed-phase liquid chromatography system with fluorescence detection and a Zorbax Eclipse XDB phenyl column and gradient elution was used. The within and between assay coefficients of variation of the method for quinine and its metabolites in plasma and urine was less than 13%. The lower limit of quantitation was in the range of 0.024–0.081 μM.  相似文献   

16.
N,N-Diethyl-m-toluamide (DEET) and oxybenzone are two essential active ingredients in insect repellent and sunscreen preparations. We developed and validated a simple, sensitive, and selective HPLC assay to simultaneously measure DEET, oxybenzone and five primary metabolites of DEET and oxybenzone in biological samples including plasma, urine and skin strips. The compounds were separated on a reversed-phase C18 column using three-stage gradient steps with methanol and water. DEET and two relevant metabolites were detected at 254 nm, while oxybenzone and three relevant metabolites were detected at 289 nm. The limit of detection was 0.6 ng for DEET and 0.5 ng for oxybenzone, respectively. The developed method was further applied to analyze various biological samples from an in vivo animal study that evaluated concurrent use of commercially available insect repellent and sunscreen preparations.  相似文献   

17.
18.
A review of progress in the field of multichannel detection in column and thin-layer chromatography is presented, together with some novel applications of a computer-based, linear photodiode array UV—visible spectrophotometer for detection in high-performance liquid chromatography (HPLC). Computer-aided methods for simultaneous monitoring of the elution profile at three wavelengths with automatic peak detection and capture of UV spectra are described. The continuous calculation of absorbance ratios during elution is discussed as an index of peak homogeneity. A novel technique for the enhancement of qualitative identification in HPLC, based on transformation of captured spectra to the second derivative or to the decadic logarithm, is proposed. These developments are exemplified by a model system of diacetylmorphine and its principal metabolites and degradation products, morphine and 6-acetylmorphine. The potential utility of three-dimensional projections of (A,ν,t) data is discussed in the context of pharmaceutical, bioanalytical and forensic applications.  相似文献   

19.
A reversed-phase ion-pair high-performance liquid chromatography method for the determination of acyclovir and its metabolite 9-carboxymethoxymethylguanine is described. The samples are purified by reversed-phase solid-phase extraction. The components are separated on a C18 column with a mobile phase containing 18% acetonitrile, 5 mM dodecyl sulphate and 30 mM phosphate buffer, pH 2.1, and measured by fluorescence detection using an excitation wavelength of 285 nm and an emission wavelenght of 380 nm. Detection limits are 0.12 μM (plasma)) and 0.60 μM (urine) for acyclovir, and 0.26 μM (plasma) and 1.3 μM (urine) for metabolite. Correlation coefficients that were better than 0.998 were obtained normally. This analytical method, which enables simultaneous measurement of parent compound and metabolite, has been used in kinetics studies and for therapeutic drug monitoring in different patient groups with variable degrees of renal dysfunction.  相似文献   

20.
A generic method for the detection of covalent adducts to the cysteine-34 residue of human serum albumin (HSA) has been developed, based on an on-line combination of immunoaffinity chromatography for selective sample pre-treatment, solution phase digestion, liquid chromatography and tandem mass spectrometry. Selective anti-HSA antibodies immobilized on agarose were used for sample pre-concentration and purification of albumin from the chemically produced alkylated HSA. After elution, HSA and HSA adducts are mixed with pronase and directed to a reaction capillary kept at a digestion temperature of 70 degrees C. The digestion products were trapped on-line on a C18 SPE cartridge. The peptides were separated on a reversed-phase column using a gradient of organic modifier and subsequently detected using tandem mass spectrometry. Modified albumin samples consisted of synthetically alkylated HSA by the reactive metabolite of acetaminophen, N-acetyl-p-benzoquinoneimine (NAPQI), and using the alkylating agent 1-chloro-2,4-dinitrobenzene (CDNB) as reference. The resulting mixture of alkylated versus non-modified albumin has been applied to the on-line system, and alkylation of HSA is revealed by the detection of the modified marker tetra-peptide glutamine-cysteine-proline-phenylalanine (QCPF) adducts NAPQI-QCPF and CDNB-QCPF. Detection of alkylated species was enabled by the use of data comparison algorithms to distinguish between unmodified and modified HSA samples. The in-solution digestion proved to be a useful tool for enabling fast (less than 2 min) and reproducible on-line digestion of HSA. A detection limit of 1.5 micromol/L of modified HSA could be obtained by applying 10 microL of NAPQI-HSA sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号