首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Abstract— The turnover of phosphoglycerides in subcellular fractions of adult mouse brain was examined after intracerebral injection of [1-14C]oleic acid. Radioactivity of the total brain homogenate decreased rapidly thereafter, with only 4 per cent of the radioactivity remaining at the end of 3 months. The rate of decrease of radioactivity in the subcellular fractions was in the order: cytosol, microsomes, synaptosomes and myelin. Increasing amounts of radioactivity were detected in the alkenyl groups and cerebrosides, but metabolic conversions were not as extensive as found previously with the palmitoyl group. The specific radioactivities for diacyl sn-glycero-3-phosphorylcholine and diacyl sn-glycero-3-phosphorylethanolamine were highest in the microsomal fraction and decreased with time. The apparent half-lives for the diacyl sn-glycero-3-phosphorylcholine and the diacyl sn-glycero-3-phosphorylethanolamine in the microsome and synaptosome-rich fractions were 1-3.5 days when estimated between 1 and 7 days after injection. The rate of decay for the brain membrane phosphoglycerides was not linear with time, probably because of the extensive amount of recycling occurring within the system. Radioactivity was incorporated into the phosphoglycerides of the myelin but equilibration of radioactivity between microsomes and myelin required 7–14 days.  相似文献   

2.
Abstract— Three groups of six mice each were killed 1, 4 and 7 days after an intracerebral injection of [1,2-14C]ethanolamine. The specific radioactivities of the acid-labile ethanolamine phosphoglycerides (ethanolamine plasmalogens) and of the acid-stable ethanolamine phosphoglycerides (diacyl and alkyl acyl glycerophosphoryletholamines) from myelin and microsomal fractions were determined. All of these brain ethanolamine phosphoglycerides turn over rapidly with an apparent half-life of less than 3 days. The biosynthesis of alkenyl acyl glycerophosphorylethanolamines from diacyl glycerophosphorylethanolamines in mouse brain myelin or microsomes is unlikely.  相似文献   

3.
—Age-related changes in acyl group composition of diacyl-glycerophosphorylethanolamine (GPE), alkenylacyl-GPE and diacyl-glycerophosphorylcholine (GPC) were examined in myelin and microsomal fractions of mouse brain during development. In general, the phosphoglycerides in the myelin fraction showed an increase in the proportions of 18:1 and 20:1 and a decrease in the proportions of 16:0, 20:4(n-6) and 22:6(n-3) with increasing age. These changes were especially obvious with the acyl groups of alkenylacyl-GPE. The acyl group profiles of phosphoglycerides in the microsomal fraction were different from those in the myelin fraction. During development, there was an increase in 22:6 and a decrease in 20:4 in the phosphoglycerides of microsomes. These changes were especially obvious with the diacyl-GPE. Starting from 2 weeks of age, there was also an increase in the proportions of 18:1 and 20:1 in alkenylacyl-GPE in the microsomal fraction but this change was not as dramatic as that in the myelin fraction. In general, the acyl groups of diacyl-GPC in both myelin and microsomal fractions showed only little age-related changes as compared to the ethanolamine phosphoglycerides. Results suggest an induction in the synthesis of monoenoic fatty acids in brain during development. The monoenoic fatty acids synthesized during this period are rapidly and preferentially incorporated into the ethanolamine plasmalogen for further utilization in synthesis of the myelin membranes.  相似文献   

4.
The lipid compositions of whole brain homogenates and microsomal and myelin fractions isolated from the brains of 6-month-old rats raised on a lab chow diet, a fatty acid-deficient diet, and a deficient diet supplemented with 5% (w/w) corn oil were determined. Brain and body weights were significantly lower in the fatty acid-deficient group. The compositions of alk-1-enyl groups and phospholipids of whole brain homogenates of rats maintained on the three diets were not different. However, marked alterations were found in the acyl group compositions of the major phosphoglycerides from whole brain homogenates and from the myelin and microsomal fractions of rats maintained on the fatty acid-deficient diet. With the deficient diet, 20:3(n - 9) was found in the major phosphoglycerides as well as in the myelin and microsomal fractions. In addition, the levels of 20:4(n - 6) and 22:4(n - 6) were decreased. The levels of 20:4(n - 6), 22:4(n - 6), and 22:5(n - 6) were higher in the brain phosphoglycerides of rats maintained on the corn oil-supplemented diet than on the lab chow control diet, and the elevation in these acyl groups was more evident in the microsomal fraction than in the myelin fraction.  相似文献   

5.
The phospholipid composition and acyl, alkyl, and alkenyl group compositions of diacyl, alkylacyl, and alkenylacyl phosphoglycerides of M. javanica were investigated. Phospholipid was comprised of 61.7% choline phosphoglyceride, 22.0% ethanolamine phosphoglyceride, and smaller quantities of six other lipids. Phospholipid fatty acid was more unsaturated than neutral lipid fatty acid and contained 61.3% octadecenoic (18:1) acid. Fatty acid at the 1-position of diacyl phospholipids was shorter and more saturated than that at the 2-position. Compared to choline phosphoglyceride, ethanolantine phosphoglyceride contained less 18:1 and 20:5 and more 18:0 and 20:0 acid. Alkenylacyl and alkylacyl compounds comprised 34.6% and 9.3%, respectively, of the ethanolamine phosphoglyceride but only 0.5% and 0.6% of the choline phosphoglyceride. Alkenylacyl and alkylacyl ethanolamine phosphoglycerides contained a smaller percentage of 20-carbon polyunsaturated acid at their 2-positions than did their diacyl analogue. At least 95% of the alkenyl and alkyl groups were 18:0 compounds. Tomato roots did not contain alkenylacyl or alkylacyl phosphoglycerides; their occurrence in M. javanica is a significant biochemical difference between the nematode and its host.  相似文献   

6.
COMPARISON OF THE FATTY ACIDS OF LIPIDS OF SUBCELLULAR BRAIN FRACTIONS   总被引:6,自引:3,他引:3  
Abstract— Rat brain grey and white matter were fractionated to yield myelin, nerve terminal, synaptic vesicle, nerve terminal 'ghost', and microsomal fractions of white and grey matter. Ester-type glycolipids were found in all fractions except myelin, while cerebrosides occurred in significant concentrations only in myelin and white microsomes. Comparison of the fatty acid profile of the ethanolamine- and serine-containing phospholipids showed marked differences between myelin and the particles from grey matter, while the microsomes of white matter were of intermediate composition. Docosahexaenoic acid, a minor acid in myelin, was a major fatty acid in microsomes of grey and white matter. The fatty acid composition of sphingomyelin was distinctly different in the fractions derived from grey and white matter, clustering about stearate and nervonate in the latter, but only about stearate in the grey. Marked differences in the positional distribution of fatty acids were seen within phosphatidyl choline from myelin and nerve terminals. Ribonucleic acid was found in nerve terminal and synaptic vesicle fractions. The sphingosine found in the ganglioside from microsomes of both grey and white matter was similar with respect to distribution of the C18 and C20 homologues.
The possibility is discussed that microsomes furnish characteristic lipids for the synthesis or renewal of specific membranes, and that these lipids are accumulated somewhat before being released.  相似文献   

7.
Abstract— The ethanolaminephosphotransferase (EC 2.7.8.1) of rat brain is found largely in the microsomal fraction and is active towards both diacyl glycerol and alkenyl acyl glycerol. Manganese ions were found to be more effective activators of the enzyme than magnesium ions at low concentrations. The Km for CDP-ethanolamine was found to be about 2.5 × 10−4 M in the presence of either lipid acceptor and the K m for the two lipid acceptors about 1.6 × 10−3 M. Under the most favourable conditions rates of 270 nmol phosphatidylethanolamine and 70 nmol ethanolamine plasmalogen/mg microsomal protein/h at 39°C were obtained. The effect of temperature on the reaction rate depended on whether diacyl glycerol or alkenyl acyl glycerol was the lipid acceptor. Although diacyl glycerol inhibited the formation of ethanolamine plasmalogen the inhibition was not a simple competitive one. In terms of microsomal protein the activity was maximal during the period of active myelination but at3 days and 150 days of ageitwasat least 50 percent of this maximal activity.  相似文献   

8.
COMPOSITION OF MOUSE BRAIN MYELIN DURING DEVELOPMENT   总被引:9,自引:3,他引:6  
Myelin was isolated from the brains of mice at ages of 14, 24, 41, 44, 47, and 182 days and the contents of lipid phosphorus, cholesterol, lipid galactose, alkenyl groups, ethanolamine phosphoglycerides, choline phosphoglycerides, sphingomyelin, and serine and inositol phosphoglycerides were determined. Significant differences in the composition relative to total lipid phosphorus were found in the myelin. At 14 days of age, the myelin had lower relative amounts of cholesterol, galactolipids, alkenyl groups, and ethanolamine phosphoglycerides and a higher relative amount of choline phosphoglycerides.  相似文献   

9.
A thin-layer chromatographic procedure for the isolation of tissue phospholipids and their subsequent analysis is described. The method has been applied to the determination of the fatty acids of phosphoglycerides in human brain from the early fetal stage to old age. The study shows changes in the distribution and fatty acid composition of each phosphoglyceride in normal brain, although they are quite small after early childhood. A lipid-specific fatty acid pattern for each of the four major phosphoglycerides was found. Besides this, the pronounced differences between fatty acids of the lipids from the cerebral cortex and from the adjacent white matter justify speaking of a tissue-specific fatty acid pattern for brain phosphoglycerides. The phospholipids of cerebral white matter contained more monoenoic acid but much less polyunsaturated fatty acid than those of cerebral cortex. The brain phosphoglycerides also showed an age-dependent fatty acid pattern. With increasing age the concentration of the fatty acids of the linoleate family diminished while that of the linolenate family increased. Brain inositol phosphoglycerides, the fatty acid composition of which has not been studied systematically before, were characterized by a large concentration of arachidonate which was nearly as high for white as for gray matter and showed only small changes with age.  相似文献   

10.
Abstract— The variation with age of the fatty acid composition of the major lipids in human brain myelin was compared with that of cerebral white matter from the same region. The myelin was isolated from the semiovale centre of the cerebrum of 27 subjects neonatal to old aged. The phospholipid, cholesterol and galactolipid concentrations were determined in all the samples, as were the proportions of the major phospholipid classes. The proportions of cholesterol and especially of the galactolipids increased in myelin during the first 6 months, and in cerebral white matter up to 2 years. During this period the individual phospholipids also varied substantially. Serine phosphoglycerides and especially sphingomyelins increased, and choline phosphoglycerides decreased. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) and sphingomyelins underwent the largest changes. The proportions of saturated fatty acids in EPG diminished rapidly, and there was an increase of monoenoic acids. Fatty acids of the linoleic acid series showed a peak between 4 and 12 months, after which time their proportion slowly diminished to old age. The major fatty acid of this series was docosatetraenoic acid, 22:4 (n-6), which constituted more than 25% of total fatty acids at the maximum level. The fatty acid changes were larger in cerebral white matter, but from 2 years of age the EPG fatty acid pattern in myelin was similar to that in white matter. The fatty acid changes in serine and choline phosphoglycerides of myelin with maturation were much less striking than in EPG but of a similar type. In myelin sphingomyelin the proportion of saturated long-chain fatty acids, C16-C22, diminished, while that of monoenoic acids increased and continued to do so up to old age. From 2 years of age the fatty acid patterns in myelin and cerebral white matter were quite similar. Also the fatty acid patterns of cerebrosides and sulphatides in cerebral white matter and myelin were the same except for the first 2 months of life. The same fatty acid changes occurred in cerebrosides and sulphatides as in the sphingomyelins, i.e. increased proportions of unsaturated (monoenoic) acids. The proportions of 24:1 and 24h:1 and of the odd-numbered fatty acids 25:1 and 23h:1 continued to increase to old age. The variations of the individual lipid fatty acid patterns were small except in the youngest age classes, in which the variations were presumably ascribable to the difficulty in determining the gestational age.  相似文献   

11.
Abstract— The effects of carbamylcholine on incorporation of [1-14C]arachidonate into the glycerolipids in mouse brain synaptosome-rich and microsomal fractions were examined at 1, 3 and 10 min after intracerebral injection of the labeled precursor. When carbamylcholine was included with the labeled arachidonate, there was a decrease in the proportion of labeled fatty acid incorporated into the phospholipids. Among the phospholipids in the synaptosome-rich fraction, a decrease in incorporation of radioactivity into diacyl-glycerophosphoinositols and diacyl-glycerophosphocholines was observed at 1 and 3 min after injection. A decrease in labeling of diacyl-glycerophosphoethanolamines and diacyl-glycerophosphocholines in the microsomal fraction was observed at 3 and 10 min after injection. The decrease in phospholipid labeling was marked by an increase in labeling of diacylglycerols which was observed initially in the synaptosome-rich fraction, but also in the microsomal fraction at later time periods. Other lipid changes included an increase in triacylglycerol labeling which was found in the synaptosome-rich fraction and an increase in phosphatidic acid labeling which was found in the microsomal fraction. Results of the in vivo study have demonstrated changes in brain lipid metabolism during carbamylcholine stimulation. Furthermore, these changes appear to be initiated mainly in the synaptosome-rich fraction.  相似文献   

12.
The major phosphoglycerides in grey and white matter from the brain of the koala have been separated and examined. The major polyunsaturated fatty acids present in both the diacyl- and alk-1-enyl acylglycerophosphorylethanolamines from grey matter were 22:6 omega 3, 20:4 omega 6, and 22:4 omega 6. In both grey and white matter, 22:6 omega 3 and 20:4 omega 6 were concentrated in the 2-position of diacylglycerophosphorylethanolamines and 22:4 omega 6 in the 2-position of alk-1-enylacylglycerophosphorylethanolamines; polyunsaturated fatty acid levels were higher in diacylglycerophosphorylethanolamines. Ethanolamine phosphoglyceride fractions from grey matter were enriched in polyunsaturated fatty acids compared with those from white matter. The acyl groups 18:0, 18:1, and 16:0 and their alk-1-enyl analogues were prominent in grey and white matter ethanolamine phosphoglycerides; 18:1 was dominant in white matter alk-1-enylacylglycerophosphorylethanolamines. The plasmalogen composition of ethanolamine phosphoglycerides was 55% in grey matter and 76% in white matter. Choline phosphoglycerides contained negligible plasmalogen and low polyunsaturated fatty acid levels. Diacylglycerophosphorylcholine was characterized by high levels of 16:0 and 18:1. Similar acyl group distributions were estimated in the 1-position in both grey and white matter, 16:0 being present at greater than 50%. The presence of the molecular species 18:0/22:6 omega 3 was indicated in grey matter diacylglycerophosphorylethanolamine, 18:1/18:1 in white matter alk-1-enylcylglycerophosphorylethanolamine, and 16:0/18:1 in white matter diacylglycerophosphorylcholine.  相似文献   

13.
The ethanolamine phosphoglycerides were prepared from lipid extracts of ox and mouse brains by preparative thin-layer chromatography. The cyclic acetal derivatives of the alk-1-enyl groups were made by treating the ethanolamine phosphoglycerides with 1,3-propanediol. The resulting monoacyl glycerophosphoryl ethanolamines were separated from the unchanged ethanolamine phosphoglycerides by preparative thin-layer chromatography. Methyl ester derivatives of the acyl groups from both of these fractions were prepared by alkaline methanolysis. The cyclic acetal and methyl ester derivatives were analyzed by gas-liquid chromatography. Substantial differences were found in the composition of the side chains when the combined alk-1-enyl and acyl side chains of the alk-1'-enyl acyl glycerophosphoryl ethanolamines were compared with the side chains of the diacyl glycerophosphoryl ethanolamines. The side chains from the 1-position of these two ethanolamine phosphoglycerides are different in chain length and unsaturation as well as in chemical bonding. The acyl groups from the 2-position of the alk-1'-enyl acyl glycerophosphoryl ethanolamines were predominantly unsaturated. Therefore, acyl group compositions of the total ethanolamine phosphoglyceride from brain are of limited value and individual types should be analyzed.  相似文献   

14.
Long-chain acyl coenzyme A (CoA) synthetase in homogenates and microsomes from rat brain gray and white matter was studied. The formation of the thioesters of CoA was studied upon addition of [1-14C]-labeled fatty acids. The maximal activities were seen with linoleic acid, followed by arachidonic, palmitic, and docosahexaenoic acids in both gray and white matter homogenates and microsomes. The specific activities in microsomes were 3–5 times higher than in homogenates. The presence of Triton X-100 in the assay system enhanced the activity of long-chain acyl CoA synthetase in homogenates. The effect was more pronounced in palmitic and docosahexaenoic acid activation. The apparentK m values andV max values for palmitic and docosahexaenoic acids were much lower than for linoleic and arachidonic acids. The presence of Triton X-100 in the medium caused a definite decrease in the apparentK m and Vmax values for all the fatty acid except palmitic acid in which case the reverse was true. There were no significant differences observed in the kinetic measurements between gray and white matter microsomes. These findings are similar to those resulting from the known interference of Triton X-100 in the measurement of kinetic variables of long-chain acyl CoA synthetase of liver microsomes. In this work, no correlation was observed between the fatty acid composition of gray and white matter and the capacity of these tissues for the activation of different fatty acids.  相似文献   

15.
Rats subjected to mild hypoxic and postdecapitative ischemic treatments indicated a decrease (8–16%) in the proportion of polyunsaturated acyl groups of diacyl glycerophosphocholines (diacyl-GPC), diacyl glycerophosphoethanolamines (diacyl-GPE), and alkenylacyl glycerophosphoethanolamines (alkenylacyl-GPE) in brain synaptosomes. In general, the acyl group changes due to mild hypoxic treatment were less obvious than those due to the ischemic treatment. The decrease in polyunsaturated acyl groups was marked by an increase in the saturated (16:0 and 18:0) and monoenoic (18:1) acyl groups. Among the polyunsaturated acyl groups, arachidonate (20:4) indicated the greatest decrease in response to ischemic and hypoxic treatments. The decrease in polyunsaturated fatty acids of diacyl glycerophosphocholines was largest in the first minute of ischemic treatment and the first 30 min of hypoxic treatment. After the initial decrease, there was a slight recovery. The biphasic type of change was thought to be due to active reacylation of the lyso phospholipids. This biphasic change, however, was not observed with ethanolamine phosphoglycerides which indicated a steady decrease in the polyunsaturated acyl group content with time of ischemic treatment. The increased hydrolysis of polyunsaturated acyl groups in brain membrane phosphoglycerides due to the ischemic and hypoxic treatments seemed to correlate well with the implication of phospholipase A2 involvement in eliciting the increase in free fatty acids during brain stimulation.  相似文献   

16.
Abstract— The fraction that sediments between 2 × 105 g -min and 6 × 106 g -min from dilute dispersions of rat brain in 0.32 m -sucrose is a microsomal fraction with very little contamination by myelin. A crude microsomal fraction prepared in the same way from rat spinal cord contains more myelin than microsomes. Centrifugation of the crude microsomal fraction in 0.85 m -sucrose gave a floating fraction, an infranatant fraction (purified microsomes) and a small pellet. The purified microsomes contained very little myelin as judged by electron microscopy and polyacrylamide gel electrophoresis. The lipid composition resembled that of spinal cord myelin except that the purified microsomes contained relatively less cholesterol and ethanolamine plasmalogens. The content of galactolipids was much greater in spinal cord microsomes than in brain microsomes. The spinal cord CDP-ethanol-amine:diglyceride ethanolaminephosphotransferase activity (EC 2.7.8.1) was concentrated in the purified microsomes.
A spinal cord myelin fraction isolated from the 2 × 105 g -min pellet was quite pure as judged by electron microscopy, enzyme activities and polyacrylamide gel electrophoresis. No NADPH-cyto-chrome c reductase activity (EC 1.6.2.3) could be detected in the purified myelin. The ethanolaminephosphotransferase specific activity was about 5% of that found in the purified microsomal fraction. The protein content was 25% by weight for spinal cord myelin and 31% for brain myelin. Of the total spinal cord 2',3'-cyclic nucleotide-3'-phosphohydrolase activity, 16% was lost from the crude myelin during purification, 21% was recovered in the purified myelin, and 11% was found in the floating fraction from the crude microsomes. The purified myelin and microsomal fractions from spinal cord were relatively pure. Additional myelin was recovered in the floating fraction from the crude microsomes.  相似文献   

17.
The formation of product by ethanolamine phosphotransferases (EC 2.7.8.1) and cholinephosphotransferases (EC 2.7.8.2) in microsomal fractions from brains and livers of mature rats is increased several fold by 1,2-diacyl-sn-glycerols. With the addition of 1-alkyl-2-acyl-sn-glycerols, we have found an 11-fold increase with brain microsomes and a 20-fold increase with lvier microsomes in the synthesis of choline ether lipids (1-alkyl-2-acyl- and 1-alk-1'-enyl-2-acyl-sn-glycero-3-phosphorylcholines). For the synthesis of ethanolamine ether lipids (1-alkyl-2-acyl and 1-alk-1'-enyl-2-acyl-sn-glycero-3-phosphorylethanolamines), the stimulation of alkylacylglycerols was 7-fold for brain microsomes and 18-fold for liver microsomes. The alkylacyl glycerols (8 mM) also inhibited the synthesis of diacyl phosphoglycerides by 44 to 65%, indicating that the same ethanolaminephosphotransferases and cholinephosphotransferases are utilized for the synthesis of alkylacyl phosphoglycerides and diacyl phosphoglycerides. A desaturation of the alkyl groups may take place in the same reaction mixture. The rate of incorporation of phosphorylcholine into alkenylacyl glycerophosphorylcholines (choline plasmalogens) with alkylacylglycerols, cytidine diphosphate choline, and liver microsomes was 15 nmoles per mg protein per hour. The in vitro synthesis of choline plasmalogens with alkylacylglycerols had not been observed previously. The corresponding rate of incorporation of phosphorylethanolamine into ethanolamine plasmalogens was 10 nmoles per mg protein per hour, a value greater than any of the previously reported values for ethanolamine plasmalogen formation from alkylacyl glycerophosphorylethanolamines.  相似文献   

18.
Myelin development in infant brain   总被引:1,自引:0,他引:1  
Myelin was isolated from subcortical areas of ten human brains, with ages ranging from 24 days to 350 days-of-age; samples were subsequently analyzed for lipid composition. Eight infants were victims of Sudden Infant Death Syndrome, and two infants were accident cases. Gray and white matter samples from each brain were also dissected and analyzed. Galactolipids were only 12% of the total lipids in white matter from brains of infants that were 24 days-of-age, a time when myelination was just starting in the subcortical areas. At 175 and 350 days of age, myelination was well underway and galactolipids measured 22% of the total lipids. Total phospholipids decreased (65% to 54%) in white matter during development, with the decrease mostly in phosphatidylcholine (23% to 15%). Even though there was little white matter present at early ages, myelin could be isolated. Surprisingly, the lipid composition of myelin, from the 24-day-infant brain was similar to that from adult brain. Galactolipids were 22% of the total lipids, cholesterol, 23%, and phospholipids, 52%. These results suggest that only subtle remodeling of myelin occurs in humans once myelination commences. All four major gangliosides were present in myelin during this first year of development. Interestingly, the yield of myelin from the 350-day-old infant subcortical white matter was similar to that from an adult. Thus major tracts in this area may have acquired most of the myelin by one year-after-birth. Since the control samples blend quite well into the developmental pattern obtained, it is believed there are no abnormalities in myelin lipids from SIDS infants.  相似文献   

19.
Using a combination of preparative TLC and GLC technique, the content and acyl group composition of diacyl-glycerophosphoinositols, diacyl-glycerophosphates, diacylglycerols and triacyl-glycerols in brain tissue were determined. The level of diacyl-glycerophosphoinositols in 40 day-old mouse brain was 2.7 μmol/g tissue as compared to 40–170 nmol/g for other minor lipids. The acyl groups of diacyl-glycerophosphoinositols were enriched in 18:0 and 20:4 (n-6). This characteristic acyl group profile was found in microsomes, synaptosomes, and in myelin. The acyl groups of diacyl-glycerophosphates and diacylglycerols were comprised mainly of 16:0, 18:0, 18:1 and 20:4 (n-6). In rat brain subcellular fractions, the acyl groups of diacylglycerols and diacyl-glycerophosphates in the microsomal fraction had a higher proportion of 22:6 (n-3) than those in the myelin and synaptosomal fractions. The acyl groups of the myelin lipids were higher in 18:l and lower in 20:4 (n-6) as compared to those in the microsomal and synaptosomal fractions. The triacylglycerols in brain exhibited an unusual acyl group profile which included small proportions of 14:0, 16:1, 20:4 (n-6), 22:4 (n-6) and 22:6 (n-3). Except for an increase in 18:1 and a corresponding decrease in 16:0 which was found in diacyl-glycerophosphoinositols, no apparent acyl group change was observed in other metabolically active lipids during postnatal brain development.  相似文献   

20.
Mannose-rich glycopeptides derived from brain glycoproteins were obtained by proteolysis of bovine brain tissue or subcellular fractions derived from rat brain tissue. The dialyzable mannose-rich glycopeptides were isolated by colum electrophoresis and gel flitration. These glycopeptides contained, on the average, six mannose and two N-acetylglucosamine residues with variable amounts of fucose and galactose. Over 50% of the mannose-rich glycopeptides of rat brain were localized in the microsomal and synaptosomal fractions; myelin and the soluble fraction contained lesser amounts. None was recovered from the mitochondria. The amount, per mg protein, of mannose-rich oligosaccharide chains in the myelin exceeded the concentration found in the microsomal and synaptosomal fractions. The concentration of mannose-rich glycopeptides derived from glycoproteins was 50% higher in white matter than in gray. On the other hand, the non-dialyzable and acidic sialoglycopeptides showed a three-fold enrichment in gray matter compared to white. The relatively lower ratio of sialoglycopeptides to mannose-rich glycopeptides observed in white matter (2.5) compared to gray matter (6.9) is reflected in the lower value for the ratio in myelin (1.1) compared to synpatosomes (2.1). Although glycoproteins that contain mannose-rich oligosaccharide chains are present in the nerve cell and its terminals, these glycoproteins appear to be relatively enriched in myelin and/or glial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号