共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Topological and Mutational Analysis of Saccharomyces
cerevisiae Ste14p, Founding Member of the Isoprenylcysteine
Carboxyl Methyltransferase Family 下载免费PDF全文
Eukaryotic proteins that terminate in a CaaX motif undergo three processing events: isoprenylation, C-terminal proteolytic cleavage, and carboxyl methylation. In Saccharomyces cerevisiae, the latter step is mediated by Ste14p, an integral endoplasmic reticulum membrane protein. Ste14p is the founding member of the isoprenylcysteine carboxyl methyltransferase (ICMT) family, whose members share significant sequence homology. Because the physiological substrates of Ste14p, such as Ras and the yeast a-factor precursor, are isoprenylated and reside on the cytosolic side of membranes, the Ste14p residues involved in enzymatic activity are predicted to be cytosolically disposed. In this study, we have investigated the topology of Ste14p by analyzing the protease protection of epitope-tagged versions of Ste14p and the glycosylation status of Ste14p-Suc2p fusions. Our data lead to a topology model in which Ste14p contains six membrane spans, two of which form a helical hairpin. According to this model most of the Ste14p hydrophilic regions are located in the cytosol. We have also generated ste14 mutants by random and site-directed mutagenesis to identify residues of Ste14p that are important for activity. Notably, four of the five loss-of-function mutations arising from random mutagenesis alter residues that are highly conserved among the ICMT family. Finally, we have identified a novel tripartite consensus motif in the C-terminal region of Ste14p. This region is similar among all ICMT family members, two phospholipid methyltransferases, several ergosterol biosynthetic enzymes, and a group of bacterial open reading frames of unknown function. Site-directed and random mutations demonstrate that residues in this region play a critical role in the function of Ste14p. 相似文献
3.
Xinwen Liang Martin B. Dickman Donald F. Becker 《The Journal of biological chemistry》2014,289(40):27794-27806
The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP+/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted. 相似文献
4.
Cer1p Functions as a Molecular Chaperone in the Endoplasmic Reticulum of Saccharomyces cerevisiae 下载免费PDF全文
T. Guy Hamilton Tracy B. Norris Pamela R. Tsuruda Gregory C. Flynn 《Molecular and cellular biology》1999,19(8):5298-5307
Cer1p/Lhs1p/Ssi1p is a novel Hsp70-related protein that is important for the translocation of a subset of proteins into the yeast Saccharomyces cerevisiae endoplasmic reticulum. Cer1p has very limited amino acid identity to the hsp70 chaperone family in the N-terminal ATPase domain but lacks homology to the highly conserved hsp70 peptide binding domain. The role of Cer1p in protein folding and translocation was assessed. Deletion of CER1 slowed the folding of reduced pro-carboxypeptidase Y (pro-CPY) approximately twofold in yeast. In wild-type yeast under reducing conditions, pro-CPY can be found in a complex with Cer1p, while partially purified Cer1p is able to bind directly to peptides. Together, this suggests that Cer1p has a chaperoning activity required for proper refolding of denatured pro-CPY which is mediated by direct interaction with the unfolded polypeptide. Cer1p peptide binding and oligomerization could be disrupted by addition of ATP, confirming that Cer1p possesses a functional ATP binding site, much like Kar2p and other members of the hsp70 family. Interestingly, replacing the signal sequence of a CER1-dependent protein with that of a CER1-independent protein did not relieve the requirement of CER1 for import. This result suggests that an interaction with the mature portion of the protein also is important for the translocation role of Cer1p. The CER1 RNA levels increase at lower temperatures. In addition, the effects of deletion on folding and translocation are more severe at lower temperatures. Therefore, these results suggest that Cer1p provides an additional chaperoning activity in processes known to require Kar2p. However, there appears to be a greater requirement for Cer1p chaperone activity at lower temperatures. 相似文献
5.
《Bioscience, biotechnology, and biochemistry》2013,77(10):2226-2232
A novel membrane protein, Yml067c in the systematic ORF name, was discovered as a component of immunoisolated vesicles of the early Golgi compartment of the yeast Saccharomyces cerevisiae (Cho et al., FEBS Lett. 469, 151-154 (2000)). Conserved sequences having sequence similarity to Yml067c were widely distributed in the eukaryotes and one of them, Yal042w, was found in the Saccharomyces genome database. In the yeast cell, Yml067c and Yal042w were found to form a heterooligomeric complex by immunoprecipitation of their tagged derivatives from the detergent-solubilized membrane. Cell fractionation and indirect immunofluorescent staining indicated that the majority of these proteins were localized on the ER membrane. Therfore, the Yml067c-Yal042w complex should shuttle between the ER and the early Golgi compartment as well as the p24-family proteins. 相似文献
6.
Claude A. Jakob Patricie Burda Jürgen Roth Markus Aebi 《The Journal of cell biology》1998,142(5):1223-1233
In Saccharomyces cerevisiae, transfer of N-linked oligosaccharides is immediately followed by trimming of ER-localized glycosidases. We analyzed the influence of specific oligosaccharide structures for degradation of misfolded carboxypeptidase Y (CPY). By studying the trimming reactions in vivo, we found that removal of the terminal α1,2 glucose and the first α1,3 glucose by glucosidase I and glucosidase II respectively, occurred rapidly, whereas mannose cleavage by mannosidase I was slow. Transport and maturation of correctly folded CPY was not dependent on oligosaccharide structure. However, degradation of misfolded CPY was dependent on specific trimming steps. Degradation of misfolded CPY with N-linked oligosaccharides containing glucose residues was less efficient compared with misfolded CPY bearing the correctly trimmed Man8GlcNAc2 oligosaccharide. Reduced rate of degradation was mainly observed for mis- folded CPY bearing Man6GlcNAc2, Man7GlcNAc2 and Man9GlcNAc2 oligosaccharides, whereas Man8GlcNAc2 and, to a lesser extent, Man5GlcNAc2 oligosaccharides supported degradation. These results suggest a role for the Man8GlcNAc2 oligosaccharide in the degradation process. They may indicate the presence of a Man8GlcNAc2-binding lectin involved in targeting of misfolded glycoproteins to degradation in S. cerevisiae. 相似文献
7.
Functional Characterization of the Interaction of Ste50p with Ste11p MAPKKK in Saccharomyces cerevisiae 下载免费PDF全文
Cunle Wu Ekkehard Leberer David Y. Thomas Malcolm Whiteway 《Molecular biology of the cell》1999,10(7):2425-2440
The Saccharomyces cerevisiae Ste11p protein kinase is a homologue of mammalian MAPK/extracellular signal-regulated protein kinase kinase kinases (MAPKKKs or MEKKs) as well as the Schizosaccharomyces pombe Byr2p kinase. Ste11p functions in several signaling pathways, including those for mating pheromone response and osmotic stress response. The Ste11p kinase has an N-terminal domain that interacts with other signaling molecules to regulate Ste11p function and direct its activity in these pathways. One of the Ste11p regulators is Ste50p, and Ste11p and Ste50p associate through their respective N-terminal domains. This interaction relieves a negative activity of the Ste11p N terminus, and removal of this negative function is required for Ste11p function in the high-osmolarity glycerol (HOG) pathway. The Ste50p/Ste11p interaction is also important (but not essential) for Ste11p function in the mating pathway; in this pathway binding of the Ste11p N terminus with both Ste50p and Ste5p is required, with the Ste5p association playing the major role in Ste11p function. In vitro, Ste50p disrupts an association between the catalytic C terminus and the regulatory N terminus of Ste11p. In addition, Ste50p appears to modulate Ste11p autophosphorylation and is itself a substrate of the Ste11p kinase. Therefore, both in vivo and in vitro data support a role for Ste50p in the regulation of Ste11p activity. 相似文献
8.
Anderson JL Frase H Michaelis S Hrycyna CA 《The Journal of biological chemistry》2005,280(8):7336-7345
Numerous proteins, including Ras, contain a C-terminal CAAX motif that directs a series of three sequential post-translational modifications: isoprenylation of the cysteine residue, endoproteolysis of the three terminal amino acids and alpha-carboxyl methylesterification of the isoprenylated cysteine. This study focuses on the isoprenylcysteine carboxylmethyltransferase (Icmt) enzyme from Saccharomyces cerevisiae, Ste14p, the founding member of a homologous family of endoplasmic reticulum membrane proteins present in all eukaryotes. Ste14p, like all Icmts, has multiple membrane spanning domains, presenting a significant challenge to its purification in an active form. Here, we have detergent-solubilized, purified, and reconstituted enzymatically active His-tagged Ste14p from S. cerevisiae, thus providing conclusive proof that Ste14p is the sole component necessary for the carboxylmethylation of isoprenylated substrates. Among the extensive panel of detergents that was screened, optimal solubilization and retention of Ste14p activity occurred with n-dodecyl-beta-d-maltoside. The activity of Ste14p could be further optimized upon reconstitution into liposomes. Our expression and purification schemes generate milligram quantities of pure and active Ste14p, which is highly stable under many conditions. Using pure reconstituted Ste14p, we demonstrate quantitatively that Ste14p does not have a preference for the farnesyl or geranylgeranyl moieties in the model substrates N-acetyl-S-farnesyl-l-cysteine (AFC) and N-acetyl-S-geranylgeranyl-l-cysteine (AGGC) in vitro. In addition to catalyzing methylation of AFC, we also show that purified Ste14p methylates a known in vivo substrate, Ras2p. Evidence that metals ions are required for activity of Ste14p is also presented. These results pave the way for further characterization of pure Ste14p, as well as determination of its three-dimensional structure. 相似文献
9.
The Saccharomyces cerevisiae SCS2 Gene Product, a Homolog of a Synaptobrevin-Associated Protein, Is an Integral Membrane Protein of the Endoplasmic Reticulum and Is Required for Inositol Metabolism 总被引:1,自引:0,他引:1 下载免费PDF全文
Satoshi Kagiwada Kohei Hosaka Masayuki Murata Jun-ichi Nikawa Akira Takatsuki 《Journal of bacteriology》1998,180(7):1700-1708
The Saccharomyces cerevisiae SCS2 gene has been cloned as a suppressor of inositol auxotrophy of CSE1 and hac1/ire15 mutants (J. Nikawa, A. Murakami, E. Esumi, and K. Hosaka, J. Biochem. 118:39–45, 1995) and has homology with a synaptobrevin/VAMP-associated protein, VAP-33, cloned from Aplysia californica (P. A. Skehel, K. C. Martin, E. R. Kandel, and D. Bartsch, Science 269:1580–1583, 1995). In this study we have characterized an SCS2 gene product (Scs2p). The product has a molecular mass of 35 kDa and is C-terminally anchored to the endoplasmic reticulum, with the bulk of the protein located in the cytosol. The disruption of the SCS2 gene causes yeast cells to exhibit inositol auxotrophy at temperatures of above 34°C. Genetic studies reveal that the overexpression of the INO1 gene rescues the inositol auxotrophy of the SCS2 disruption strain. The significant primary structural feature of Scs2p is that the protein contains the 16-amino-acid sequence conserved in yeast and mammalian cells. The sequence is required for normal Scs2p function, because a mutant Scs2p that lacks the sequence does not complement the inositol auxotrophy of the SCS2 disruption strain. Therefore, the Scs2p function might be conserved among eukaryotic cells. 相似文献
10.
Corrado Viotti Falco Krüger Melanie Krebs Christoph Neubert Fabian Fink Upendo Lupanga David Scheuring Yohann Boutté Márcia Frescatada-Rosa Susanne Wolfenstetter Norbert Sauer Stefan Hillmer Markus Grebe Karin Schumacher 《The Plant cell》2013,25(9):3434-3449
Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H+-pyrophosphatase and the vacuolar H+-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)–Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function. 相似文献
11.
M. Ramezani Rad G. Jansen F. Bühring C. P. Hollenberg 《Molecular genetics and genomics : MGG》1998,259(1):29-38
STE50 is required to sustain pheromone-induced signal transduction in?S. cerevisiae. Here we report that Ste50p is involved in regulating pseudohyphal development. Both of these processes are also dependent on Ste11p. Deletion of STE50 leads to defects in filamentous growth, which can be suppressed by overproduction of Ste11p. Overexpression of STE11 also suppresses the mating defects of ste50 mutants. We have analysed the physical association between Ste50p and Ste11p in extracts of cells harvested under various conditions. A Ste11p-Ste50p complex can be isolated from extracts of cells in which the pheromone response has been activated, as well as from normally growing cells. Formation of the Ste50p-Ste11p complex does not require Gα, Gβ, Ste20p or Ste5p. Oligomerisation of Ste11p is shown to be independent of activation of the pheromone response pathway, and occurs in the absence of Ste50p. We conclude that Ste50p is necessary for Ste11p activity in at least two differentiation programmes: mating and filamentous growth. 相似文献
12.
Gang Xu Gregor Jansen David Y. Thomas Cornelis P. Hollenberg Massoud Ramezani Rad 《Molecular microbiology》1996,20(4):773-783
In the yeast Saccharomyces cerevisiae, the hetero-trimeric G protein transduces the mating pheromone signal from a cell-surface receptor. Free Gβγ then activates a mitogen-activated protein (MAP) kinase cascade. STE50 has been shown to be involved in this pheromone signal-transduction pathway. In this study, we present a functional characterization of Ste50p, a protein that is required to sustain the pheromone-induced signal which leads cells to hormone-induced differentiation. Inactivation of STE50 leads to the attenuation of mating pheromone-induced signal transduction, and overexpression of STE50 intensifies the pheromone-induced signalling. By genetic analysis we have positioned the action of Ste50p downstream of the α-pheromone receptor (STE2), at the level of the heterotrimeric G protein, and upstream of STE5 and the kinase cascade of STE11 and STE7. In a two-hybrid assay Ste50p interacts weakly with the G protein and strongly with the MAPKKK Ste11p. The latter interaction is absent in the constitutive mutant Ste11pP279S. These data show that a new component, Ste50p, determines the extent and the duration of signal transduction by acting between the G protein and the MAP kinase complex in S. cerevisiae. 相似文献
13.
The Saccharomyces cerevisiae v-SNARE Vti1p Is Required for Multiple Membrane Transport Pathways to the Vacuole 下载免费PDF全文
The interaction between v-SNAREs on transport vesicles and t-SNAREs on target membranes is required for membrane traffic in eukaryotic cells. Here we identify Vti1p as the first v-SNARE protein found to be required for biosynthetic traffic into the yeast vacuole, the equivalent of the mammalian lysosome. Certain vti1-ts yeast mutants are defective in alkaline phosphatase transport from the Golgi to the vacuole and in targeting of aminopeptidase I from the cytosol to the vacuole. VTI1 interacts genetically with the vacuolar t-SNARE VAM3, which is required for transport of both alkaline phosphatase and aminopeptidase I to the vacuole. The v-SNARE Nyv1p forms a SNARE complex with Vam3p in homotypic vacuolar fusion; however, we find that Nyv1p is not required for any of the three biosynthetic pathways to the vacuole. v-SNAREs were thought to ensure specificity in membrane traffic. However, Vti1p also functions in two additional membrane traffic pathways: Vti1p interacts with the t-SNAREs Pep12p in traffic from the TGN to the prevacuolar compartment and with Sed5p in retrograde traffic to the cis-Golgi. The ability of Vti1p to mediate multiple fusion steps requires additional proteins to ensure specificity in membrane traffic. 相似文献
14.
Adabella van der Zand Ineke Braakman Henk F. Tabak 《Molecular biology of the cell》2010,21(12):2057-2065
We show that a comprehensive set of 16 peroxisomal membrane proteins (PMPs) encompassing all types of membrane topologies first target to the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. These PMPs insert into the ER membrane via the protein import complexes Sec61p and Get3p (for tail-anchored proteins). This trafficking pathway is representative for multiplying wild-type cells in which the peroxisome population needs to be maintained, as well as for mutant cells lacking peroxisomes in which new peroxisomes form after complementation with the wild-type version of the mutant gene. PMPs leave the ER in a Pex3p-Pex19p–dependent manner to end up in metabolically active peroxisomes. These results further extend the new concept that peroxisomes derive their basic framework (membrane and membrane proteins) from the ER and imply a new functional role for Pex3p and Pex19p. 相似文献
15.
Impaired Cutinase Secretion in Saccharomyces cerevisiae Induces Irregular Endoplasmic Reticulum (ER) Membrane Proliferation, Oxidative Stress, and ER-Associated Degradation 总被引:1,自引:0,他引:1 下载免费PDF全文
C. M. J. Sagt W. H. Müller L. van der Heide J. Boonstra A. J. Verkleij C. T. Verrips 《Applied microbiology》2002,68(5):2155-2160
Impaired secretion of the hydrophobic CY028 cutinase invokes an unfolded protein response (UPR) in Saccharomyces cerevisiae cells. Here we show that the UPR in CY028-expressing S. cerevisiae cells is manifested as an aberrant morphology of the endoplasmic reticulum (ER) and as extensive membrane proliferation compared to the ER morphology and membrane proliferation of wild-type CY000-producing S. cerevisiae cells. In addition, we observed oxidative stress, which resulted in a 21-fold increase in carbonylated proteins in the CY028-producing S. cerevisiae cells. Moreover, CY028-producing S. cerevisiae cells use proteasomal degradation to reduce the amount of accumulated CY028 cutinase, thereby attenuating the stress invoked by CY028 cutinase expression. This proteasomal degradation occurs within minutes and is characteristic of ER-associated degradation (ERAD). Our results clearly show that impaired secretion of the heterologous, hydrophobic CY028 cutinase in S. cerevisiae cells leads to protein aggregation in the ER, aberrant ER morphology and proliferation, and oxidative stress, as well as a UPR and ERAD. 相似文献
16.
Saccharomyces cerevisiae and mammals concerning the mechanisms of the translocation step and discuss the roles of the proteins implicated in this
process.
Received: 5 June 1996/Revised: 20 September 1996 相似文献
17.
18.
19.
Koji Isodono Tomosaburo Takahashi Hiroko Imoto Naohiko Nakanishi Takehiro Ogata Satoshi Asada Atsuo Adachi Tomomi Ueyama Hidemasa Oh Hiroaki Matsubara 《PloS one》2010,5(3)
To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1). While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER). In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease. 相似文献
20.
Raghuwansh P. Sah Sushil K. Garg Ajay K. Dixit Vikas Dudeja Rajinder K. Dawra Ashok K. Saluja 《The Journal of biological chemistry》2014,289(40):27551-27561
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T−/−), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T−/− mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies. 相似文献