首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
1. Seven fractions sedimenting at between 3000 and 120000g-min were prepared from a rat liver homogenate by differential centrifugation in buffered iso-osmotic sucrose. The following measurements were carried out on each of these fractions: Ruthenium Red-sensitive Ca2+ transport in the absence and in the presence of Pi as well as in the presence of N-ethylmaleimide to prevent Pi cycling, succinate-supported respiration in the absence and in the presence of ADP, the ΔE and −59 ΔpH components of the protonmotive force, cytochrome oxidase, uncoupler-stimulated adenosine triphosphatase, α-glycerophosphate dehydrogenase, Pi content and the effect on the `resting' rate of respiration of repeated additions of a fixed Ca2+ concentration. 2. Ca2+ transport either in the presence or in the absence of added Pi and in the presence of N-ethylmaleimide exhibits significantly higher rates in the fraction sedimenting at 8000g-min. By contrast, respiration in the presence or in the absence of added ADP and the values for ΔE and −59 ΔpH were similar in those fractions sedimenting between 4000 and 20000g-min, indicating that the driving force for Ca2+ transport was similar in each of these fractions. 3. Experiments designed to determine the capacity of the individual fractions for Ca2+, as measured by the effect of repeated additions of Ca2+ on the resting rate of respiration, showed that fraction 2, i.e. that sedimenting at 8000g-min, also exhibited the greatest tolerance towards the uncoupling action of the ion. 4. Of the three enzyme activity profiles, only that of α-glycerophosphate dehydrogenase was similar to that of Ca2+ transport. Because previous workers have assigned this enzyme to loci in the inner peripheral membrane [Werner & Neupert (1972) Eur. J. Biochem. 25, 379–396], it is concluded that the Ruthenium Red-sensitive Ca2+- transport system also is located in this domain of the inner membrane. The relation of these findings to the mechanisms of mitochondrial Ca2+ transport and the biogenesis of mitochondria is discussed.  相似文献   

2.
1. The coupling ATPase of Paracoccus denitrificans can be removed from the membrane by washing coupled membrane fragments at low salt concentrations.2. This ATPase resembles coupling ATPases of mitochondria, chloroplasts and other bacteria. It is a negatively charged protein of molecular weight about 300 000. An inhibitor protein is bound tightly to the ATPase in vivo, and can be destroyed by trypsin treatment.3. ATP and ADP are found tightly bound to the coupling ATPase of P. denitrificans, both in its membrane-bound and isolated state. The ATP/ADP ratio on the enzyme is greater than one.4. Under de-energised conditions, the bound nucleotides are not available to the suspending medium. When the membrane is energised however, the bound nucleotides can exchange with added nucleotides and incorporate 32Pi. 32Pi is incorporated into the β and γ positions of the bound nucleotides, but β-labelling probably does not occur on the coupling ATPase.5. Uncouplers inhibit the exchange of the free nucleotides or 32Pi into the bound nucleotides, while venturicidin (an energy transfer inhibitor) and aurovertin stimulate the exchange.6. The response of the bound nucleotides to energisation is consistent with their being involved directly in the mechanism of oxidative phosphorylation.  相似文献   

3.
S. Ogawa  C. Shen  C.L. Castillo 《BBA》1980,590(2):159-169
31P-NMR has been used to study the increase of ΔpH in mitochondria by externally added ATP. Freshly prepared mitochondria was treated with N-ethylmaleimide to inhibit the exchange between internal and external Pi. Upon addition of ATP, phosphocreatine (30 mM) and creatine kinase to a NMR sample of mitochondria suspension (approx. 120 mg protein/ml) at 0°C, an increase of ΔpH by approx. 0.5 pH unit was observed. However the increased ΔpH could not be maintained, but slowly decayed along with the increase of external ADP/ATP ratio. Further addition of valinomycin to the suspension induced a larger ΔpH (approx. 1) which was maintained by the increased rate of internal ATP hydrolysis as seen in the growth of the internal Pi peak intensity in NMR spectra and the concomitant decrease of the external phosphocreatine peak. The external Pi and ATP peaks stayed virtually constant. When carboxyatractyloside was added to inhibit the ATP/ADP translocase, the internal Pi increase was stopped and the ΔpH decayed. These observations in conjunction with those made earlier in respiring mitochondria clearly show the reversible nature of the ATPase function in which the internal ATP hydrolysis is associated with outward pumping of protons.  相似文献   

4.
《BBA》2006,1757(5-6):304-310
Fo·F1-ATP synthase in inside-out coupled vesicles derived from Paracoccus denitrificans catalyzes Pi-dependent proton-translocating ATPase reaction if exposed to prior energization that relieves ADP·Mg2+-induced inhibition (Zharova, T.V. and Vinogradov, A.D. (2004) J. Biol. Chem.,279, 12319–12324). Here we present evidence that the presence of medium ADP is required for the steady-state energetically self-sustained coupled ATP hydrolysis. The initial rapid ATPase activity is declined to a certain level if the reaction proceeds in the presence of the ADP-consuming, ATP-regenerating system (pyruvate kinase/phosphoenol pyruvate). The rate and extent of the enzyme de-activation are inversely proportional to the steady-state ADP concentration, which is altered by various amounts of pyruvate kinase at constant ATPase level. The half-maximal rate of stationary ATP hydrolysis is reached at an ADP concentration of 8 × 10−6 M. The kinetic scheme is proposed explaining the requirement of the reaction products (ADP and Pi), the substrates of ATP synthesis, in the medium for proton-translocating ATP hydrolysis by P. denitrificans Fo·F1-ATP synthase.  相似文献   

5.
A highly active phosphate transporter was extracted with octylglucoside from bovine heart submitochondrial particles that were first partially depleted of other membrane components. It was then partially purified by ammonium sulfate fractionation. After reconstitution of the transporter into liposomes prepared with a crude mixture of soybean phospholipids, the Pi/OH exchange, but not the Pi/Pi exchange, was stimulated three- to fourfold by valinomycin and nigericin in the presence of K+. Both Pi/OH and Pi/Pi exchange activities were sensitive to mercurials and other SH reagents. The rutamycin-sensitive ATPase complex from mitochondria was reconstituted together with the phosphate transporter and adenine nucleotide transporter into liposomes. After inhibition of externally located ATPase, the hydrolysis of ATP was sensitive to atractyloside and mersalyl.  相似文献   

6.
Phosphate efflux from uncoupled rat liver mitochondria was completely inhibited when mersalyl plus butylmalonate and ATP were added to a sucrose suspending medium. Despite the total retention of phosphate a calcium efflux was observed even in presence of ruthenium red. Under the above conditions no phosphate is transported in association with the ADP/ATP carrier. While mersalyl completely blocked the phosphate release induced by ruthenium red or EGTA from coupled mitochondria it only partially inhibited the CA2+-efflux. The inhibition of Ca2+ efflux was almost completely abolished in the presence of acetate. The existence of a co-transport of Ca2+ associated with phosphate is discussed.  相似文献   

7.
Evidence is presented that the myosin subfragment-1–ADP complex, generated by the addition of Mg2+ and ADP to subfragment 1, is an intermediate within the myosin Mg2+-dependent adenosine triphosphatase (ATPase) turnover cycle. The existence of this species as a steady-state intermediate at pH8 and 5°C is demonstrated by fluorescence measurements, but its concentration becomes too low to measure at 21°C. This arises because there is a marked temperature-dependence on the rate of the process controlling ADP dissociation from subfragment 1 (rate=1.4s−1 at 21°C, 0.07s−1 at 5°C). In the ATPase pathway this reaction is in series with a relatively temperature-insensitive process, namely an isomerization of the subfragment-1–product complex (rate=0.055s−1 at 21°C, 0.036s−1 at 5°C). By means of studies on the Pi inhibition of nucleotide-association rates, a myosin subfragment-1–Pi complex was characterized with a dissociation equilibrium constant of 1.5mm. Pi appears to bind more weakly to the myosin subfragment-1–ADP complex. The studies indicate that Pi dissociates from subfragment 1 at a rate greater than 40s−1, and substantiates the existence of a myosin-product isomerization before product release in the elementary processes of the Mg2+-dependent ATPase. In this ATPase mechanism Mg2+ associates as a complex with ATP and is released as a complex with ADP. In 0.1m-KCl at pH8 1.0mol of H+ is released/mol of subfragment 1 concomitant with the myosin-product isomerization or Pi dissociation, and 0.23 mol of H+ is released/mol of subfragment when ATP binds to the protein, but 0.23 mol of H+ is taken up again from the medium when ADP dissociates. Within experimental sensitivity no H+ is released into the medium in the step involving ATP cleavage.  相似文献   

8.
M.P. Roisin  J.P. Henry 《BBA》1982,681(2):292-299
Ghosts derived from bovine chromaffin granules have a 32Pi-ATP exchange activity which is associated with the H+ pump of that membrane. This activity was low when compared to bacteria, chloroplasts or submitochondrial particles, but had similar properties (Km for ATP and Pi, ATP/Mg2+ ratio, pH profile, inhibition by dicyclohexylcarbodiimide and tributyltin) to the ATPase from above membranes. The 32Pi-ATP exchange activity was solubilized by cholate/octylglucoside mixtures. The soluble extract was lipid depleted by ammonium sulfate fractionation and partially purified by sucrose gradient centrifugation. The purified preparation was reconstituted with phospholipids by freeze-thawing. The reconstituted vesicles had a 32Pi-ATP exchange sensitive to dicyclohexylcarbodiimide and trybutyltin and an ATPase with a sensitivity to the inhibitors which varied with the reconstitution conditions. The α- and β-subunits of F1-ATPase were major components of the preparation.  相似文献   

9.
The inhibitory effect of three SH reagents, mersalyl, 5,5-dithio-bis-nitrobenzoate, andN-ethylmaleimide, on Pi transport in rat liver mitochondria was investigated under a variety of conditions. Mersalyl binds at room temperature with both high (K d<10 µM) and low affinity to mitochondria. Inhibition of Pi transport by mersalyl goes in parallel with titration of the high-affinity sites, inhibition being complete when 3.5–4.5 nmol/mg protein is bound to the mitochondria. At concentrations of mersalyl equal to or higher than 10 µM, inhibition of Pi transport occurs in less than 10 sec. At concentrations of mersalyl lower than 10 µM, the rate of reaction with the Pi carrier is considerably decreased. At a concentration of 100 µM, 5,5-dithio-bisnitrobenzoate fully inhibits Pi transport in about 1 min at room temperature. Nearly total inhibition is attained when as little as 40–50 pmol/mg is bound to mitochondria. Upon incubation longer than 1 min, additional SH groups, not belonging to the Pi carrier, begin to react. The uncoupler carbonyl cyanidep-trifluoromethoxyphenylhydrazone decreases the rate of reaction of mersalyl, 5,5-dithio-bis-nitrobenzoate, andN-ethylmaleimide with the Pi carrier. Preincubation with Pi has a similar effect. We propose that both carbonyl cyanidep-trifluoromethoxyphenylhydrazone and Pi act by increasing the acidity of the mitochondrial matrix. Protonation of the Pi carrier at the matrix side would change the accessibility of its SH groups at the outer surface of the inner membrane. This might correspond to a membrane-Bohr effect, possibly related to the opening of a gating pore in the Pi carrier.  相似文献   

10.
The trinuclear cyanine dye, tri-S-C7(5), at about 10 μM stimulated State 4 respiration of rat liver mitochondria more than 6-fold and released oligomycin-inhibited respiration completely. Thus, the dye is concluded to be a very effective cationic uncoupler of oxidative phosphorylation in mitochondria. However, for exhibition of its uncoupling action, the presence of Pi (or arsenate) was necessary, and a phosphate-transport inhibitor, N-ethylmaleimide or mersalyl, inhibited its action. The stimulation of phosphate transport via the Pi carrier by the dye is suggested to be directly related to the uncoupling action.  相似文献   

11.
Pierre Leblanc  Hubert Clauser 《BBA》1974,347(2):193-201
1. The accumulation of calcium phosphate driven by succinate oxidation is ADP-dependent. In its absence the accumulation stops after a short incubation time and the oxygen uptake is permanently stimulated. This uncoupled oxygen uptake is insensitive to the inhibitors of phosphate transport, like mersalyl and N-ethylmaleimide. When ADP plus Mg2+ are added to the medium, or when ADP is added in the initial presence of magnesium, the inhibitory action of the thiol reagents on oxygen uptake is re-established. ADP alone or Mg2+ alone are without any effect.2. Phosphate/phosphate exchange has been studied, in the absence of ADP, when calcium phosphate accumulation had stopped and oxygen uptake is uncoupled. Under these conditions the exchange process becomes insensitive to thiol reagents. Sensitivity is recovered solely in the presence of ADP plus Mg2+.3. When mitochondrial swelling is studied according to the method of Chappell, it also appears that the phosphate carrier loses it sensitivity to mersalyl in the absence of ADP, which confirms the data obtained with phosphate/phosphate exchange experiments. When ADP plus Mg2+ are added (or present), together with mersalyl, the action of the thiol inhibitor is recovered. ADP and magnesium are inactive separately. EGTA plus Mg2+ (but not EGTA plus ADP) may substitute for ADP plus Mg2+ in this process.4. A possible interaction between the magnesium binding site and the phosphate carrier is considered and discussed.  相似文献   

12.
Millisecond mixing and quenching experiments were performed in order to study the rate of phosphorylation by Pi of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles. A rapid phosphoenzyme formation was observed when the vesicles were preincubated in the absence of Ca2+ prior to the addition of Pi and Mg2+ to the medium, the half-time being in the range of 6 to 10 ms. A lag phase and a 5- to 10-fold slower rate of phosphoenzyme formation were observed when the enzyme was preincubated with Ca2+ prior to the addition to the reaction mixture of Pi, Mg2+, and an excess of ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid. The rate of phosphoenzyme hydrolysis was measured either by the addition of Ca2+ or, in the absence of Ca2+, by tracing the hydrolysis of radioactive phosphoenzyme upon the addition of nonradioactive Pi. In the presence of Ca2+, the rate of phosphoenzyme hydrolysis was found to be one order of magnitude slower than the rate of hydrolysis measured in the absence of Ca2+. Different rates of phosphoenzyme formation and cleavage were found depending on whether sarcoplasmic reticulum vesicles or purified Ca2+-dependent ATPase were used. A transient phosphorylation by Pi was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, Mg2+, and excess of Ca2+. The enzyme was phosphorylated during the initial 100 ms, the phosphoenzyme formed being slowly hydrolyzed in the subsequent incubation intervals. In these conditions ATP synthesis was observed if ADP was added to the mixture 100 ms after starting the reaction. No transient phosphorylation by Pi was observed when the enzyme was preincubated with Ca2+. Synthesis of a small but significant amount of ATP was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, ADP, Mg2+, and 20 mm CaCl2. This was not observed when the enzyme was preincubated in the presence of Ca2+.  相似文献   

13.
The (Ca2+ + Mg2+-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2+-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2+-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2+- and Mg2+-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

14.
Membranes from homogenates of growing and of dormant storage roots of red beet (Beta vulgaris L.) were centrifuged on linear sucrose gradients. Vanadate-sensitive ATPase activity, a marker for plasma membrane, peaked at 38% to 40% sucrose (1.165-1.175 grams per cubic centimeter) in the case of growing material but moved to as low as 30% sucrose (1.127 grams per cubic centimeter) during dormancy.

A band of nitrate-sensitive ATPase was found at sucrose concentrations of 25% to 28% or less (around 1.10 grams per cubic centimeter) for both growing and dormant material. This band showed proton transport into membrane vesicles, as measured by the quenching of fluorescence of acridine orange in the presence of ATP and Mg2+. The vesicles were collected on a 10/23% sucrose step gradient. The phosphate hydrolyzing activity was Mg dependent, relatively substrate specific for ATP (ATP > GTP > UTP > CTP = 0) and increased up to 4-fold by ionophores. The ATPase activity showed a high but variable pH optimum, was stimulated by Cl, but was unaffected by monovalent cations. It was inhibited about 50% by 10 nanomolar mersalyl, 20 micromolar N,N′-dicyclohexylcarbodiimide, 80 micromolar diethylstilbestrol, or 20 millimolar NO3; but was insensitive to molybdate, vanadate, oligomycin, and azide. Proton transport into vesicles from the 10/23% sucrose interface was stimulated by Cl, inhibited by NO3, and showed a high pH optimum and a substrate specificity similar to the ATPase, including some proton transport driven by GTP and UTP.

The low density of the vesicles (1.10 grams per cubic centimeter) plus the properties of H+ transport and ATPase activity are similar to the reported properties of intact vacuoles of red beet and other materials. We conclude that the low density, H+-pumping ATPase of red beets originated from the tonoplast. Tonoplast H+-ATPases with similar properties appear to be widely distributed in higher plants and fungi.

  相似文献   

15.
In newborn rat liver, the adenine nucleotide content (ATP + ADP + AMP) of mitochondria increases severalfold within 2 to 3 h of birth. The net increase in mitochondrial adenines suggests a novel mechanism by which mitochondria are able to accumulate adenine nucleotides from the cytosol (J. R. Aprille and G. K. Asimakis, 1980, Arch. Biochem. Biophys.201, 564.). This was investigated further in vitro. Isolated newborn liver mitochondria incubated with 1 mM ATP for 10 min at 30 °C doubled their adenine nucleotide content with effects on respiratory functions similar to those observed in vivo: State 3 respiration and adenine translocase activity increased, but uncoupled respiration was unchanged. The mechanism for net uptake of adenine nucleotides was found to be specific for ATP or ADP, but not AMP. Uptake was concentration dependent and saturable. The apparent Km′s for ATP and ADP were 0.85 ± 0.27 mM and 0.41 ± 0.20 mM, respectively, measured by net uptake of [14C]ATP or [14C]ADP. The specific activities of net ATP and ADP uptake averaged 0.332 ± 0.062 and 0.103 ± 0.002 nmol/min/mg protein, respectively. ADP was a competitive inhibitor of net ATP uptake. If Pi was omitted from the incubations, net uptake of ATP or ADP was reduced by 51%. Either mersalyl or N-ethylmaleimide severely inhibited the accumulation of adenine nucleotides. Net ATP uptake was stoichiometrically dependent on MgCl2, suggesting that Mg2+ is accumulated along with ATP (or ADP). Uptake was energy dependent as indicated by the following results: Net AdN uptake (especially ADP uptake) was stimulated by the addition of an oxidizable substrate (glutamate) and inhibited by FCCP (an uncoupler). Antimycin A had no effect on net ATP uptake but inhibited net ADP uptake, suggesting that ATP was able to serve as an energy source for its own accumulation. If carboxyatractyloside was added to inhibit the exchange translocase, thereby preventing rapid access of exogenous ATP to the matrix, net ATP uptake was inhibited; carboxyatractyloside had no effect on ADP uptake. It was concluded that the net uptake of adenine nucleotides from the extramitochondrial space occurs by a specific transport process distinct from the classic adenine nucleotide exchange translocase. The accumulation of adenine nucleotides may regulate matrix reactions which are allosterically affected by adenines or which require adenines as a substrate.  相似文献   

16.
17.
18.
In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways.  相似文献   

19.
Ion stimulation and some other properties of an ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.) have been determined. The ATPase had a specific requirement for Mg2+ and in the presence of Mg2+ it was stimulated by salts of monovalent cations. The degree of stimulation by monovalent salts was influenced mainly by the anion and the order of effectiveness of the anions tested was Cl->HCO 3 - >Br->malate>acetate>SO 4 2- . For any given series of anions the magnitude of the stimulation obtained was influenced by the accompanying cation (NH 4 + Na+>K+). This cation effect was abolished by 0.01% (v/v) Triton X-100 and it is suggested that it is the result of different permeabilities of membrane vesicles to the cations. There was no evidence of synergistic stimulation of the ATPase by mixtures of Na+ and K+. KCl- and NaCl-stimulation was maximal with salt concentrations in the range 60–150 mM. The true substrate of the enzyme was shown to be MgATP. It was shown that KCl stimulation was the result of an increase in Vmax rather than a change in the affinity of the enzyme for MgATP. The ATPase was inhibited by N,N-dicyclohexylcarbodiimide, diethylstilbestrol, mersalyl and KNO3 but other inhibitors tested (azide, oligomycin, orthovanadate, K3[Cr(oxalate)6] and ethyl-3-[3-dimethylaminopropyl]carbodiimide) were without effect or caused only partial inhibition at the highest concentration tested. The ATPase activity was equally distributed between pellet and supernatant fractions obtained after the subfractionation of vacuoles but the properties of the ATPase in each fraction were the same. It is suggested that beet vacuoles possess only one ATPase. The properties of the ATPase are compared with those of ATPases associated with other plant membranes and organelles and its possible role in transport at the tonoplast is discussed.Abbreviations ATPF free ATP - ATPT total ATP - BSA bovine serum albumen - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DNP 2,4-dinitrophenol - EDAC ethyl-3-(3-dimethylaminopropyl)carbodiimide - Km apparent Michaelis constant - MgATP complex of Mg2+ and ATP - Mg F 2+ free Mg2+ - Mg T 2 total Mg2+ - MES 2-(N-Morpholino)ethanesulphonic acid - Na2EDTA disodium ethylenediaminetetraacetic acid - NEM N-ethylmaleimide - Pi inorganic phosphate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)methylamine - Vmax maximum velocity  相似文献   

20.
The soluble mitochondrial ATPase, F1, can be slowly inactivated by incubation with Mg+2 in a manner consistent with the observations of Moyle and Mitchell (FEBSLett.56, 55 (1975)). This inhibition results in a low initial rate of ATP hydrolysis upon addition to an ATPase assay medium of F1 which has been incubated with Mg+2. This inhibition, however, is completely reversible by Mg·ATP in a time dependent process and results in the rate of ATP hydrolysis increasing during the ATPase assay to reach control levels after 30 sec. The length of the lag is independent of the F1 concentration in the ATPase assay and the lag is also completely reversed by subsequent incubation with excess EDTA before assay.F1 is unstable if incubated with EDTA in the absence of free nucleotides or Mg+2. The rate of inactivation increases with decreasing protein concentration until a limiting rate is reached at high dilution. Mg+2 in excess of the EDTA or 50 μM ADP stabilize the F1 against the inactivation but cannot reverse prior denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号