首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of spinal cord ischemia (10, 20, and 40 min) and post-ischemic reperfusion (10, 30, and 60 min) on lipid peroxidation and phospholipids was investigated. Spinal cord ischemia was accompanied by lipolytic processes with significant changes in concentration of lipid peroxidation products (LPP). Reestablishment of the blood supply after 10 min ischemia was accompanied by significantly increased levels of thiobarbituric acid reactive substances (TBA-RS) after 10 and 30 min of reperfusion. Following 20 and 40 min ischemia a significant increase was observed at all reperfusion periods. Ischemia itself significantly reduced the concentration of phosphatidyl inositol (IP), phosphatidyl ethanolamine (EP) and ethanolamine plasmalogens (Epls). Significant changes were observed in concentration of phosphatidyl serine (SP) too, but only after 20 and 40 min of ischemia. The concentration of phosphatidic acid (PA) was significantly reduced only after 10 min of ischemia. The onset of reperfusion after ischemia was accompanied by a diverse pattern of changes in PA, IP, Epls and SP, while the concentration of EP remained at the above mentioned ischemic intervals.  相似文献   

2.
Prolonged hepatic warm ischemia has been incriminated in oxidative stress after reperfusion. However, the magnitude of oxidative stress during ischemia has been controversial. The aims of the present study were to elucidate whether lipid peroxidation progressed during ischemia and to clarify whether oxidative stress during ischemia aggravated the oxidative damage after reperfusion. Rats were subjected to 30 to 120 min of 70% warm ischemia alone or followed by reperfusion for 60 min. Lipid peroxidation (LPO) was evaluated by amounts of phosphatidylcholine hydroperoxide (PC-OOH) and phosphatidylethanolamine hydroperoxide (PE-OOH) as primary LPO products. Total amounts of malondialdehyde and 4-hydroxy-2-nonenal (MDA + 4-HNE), degraded from hydroperoxides, were also determined. PC-OOH and PE-OOH significantly increased at 60 and 120 min ischemia with concomitant increase of oxidized glutathione. These hydroperoxides did not increase at 60 min reperfusion after 60 min ischemia, whereas they did increase at 60 min reperfusion after 120 min ischemia with deactivation of phospholipid hydroperoxide glutathione peroxidase and superoxide dismutase. The amount of MDA + 4-HNE exhibited similar changes, but the velocity of production dropped with ischemic time longer than 60 min. In conclusion, oxidative stress progressed during ischemia and triggered the oxidative injury after reperfusion. Secondary LPO products are less sensitive, especially during ischemia, which may cause possible underestimation and discrepancy.  相似文献   

3.
Intercellular concentrations of adenine nucleotide degradation products (ANDP)--adenosine inosine and hypoxanthine--in ischemic and control regions of the canine myocardium were measured by microdialysis technique during 20- and 40-min coronary artery occlusion and reperfusion. In hearts that fibrillated on reperfusion during the ischemic 40-min period catabolism of adenine nucleotides was more intensive, which could be the min cause of the reperfusion ventricular fibrillation. Reperfusion ventricular fibrillation was accompanied by an increase in the intercellular ANDP level in the control region, that indicated the development of the total myocardial ischemia. During the initial period of reperfusion after 20-min, a sharp increase in the interstitial ANDP level was observed in the ischemic region as compared with the end of the ischemia which could be explained as a result of demasking of reperfusion damage in such a case. The 40-min reperfusion induced slow reduction of the intercellular ANDP level in the ischemic region, while the regional blood flow already 5 min after the reperfusion did not differ from the blood flow in the control region. It is supposed that a slow washout of ANDP could be caused by the "no-reflow" phenomenon.  相似文献   

4.
The premise of neuroprotective therapy for acute ischemic stroke is based upon the possibility to interfere with the cellular ischemic cascade, so the understanding of the mechanisms and consequences of cerebral ischemia is necessary. The relationship between lipid peroxidation and acidosis was investigated in several regions of rat brain following ischemia without reperfusion. Male Wistar rats (280-300 g) were anaesthetised (Ketalar 33 mg/kg and Rompun 6.66 mg/kg) or not and underwent a four-vessel occlusion for 5 minutes. Then, thiobarbituric acid-reactive substances (TBARS) and lactate levels were measured in different brain regions (cerebellum, bulb, striatum, hippocampus, cortex). Induction of ischemia by ligation of two common carotid arteries and two vertebral arteries resulted in a production of TBARS (40-120%, p < 0.05) and lactate (20-60%, p < 0.05) in all cerebral regions of awake rats, especially in striatum, suggesting a potential link between lipid peroxidation and acidosis. When ischemia was realised on anaesthetised animals, an increase of lactate levels (30-50%, p < 0.05) was shown in all brain regions but TBARS were produced only in striatum (82%, p < 0.05). These data showed the particular vulnerability of striatum to ischemia and the possible opposite effects of an anaesthesia.  相似文献   

5.
The time course of lipid peroxidation was studied in the rat brain cortex after ischaemia and reperfusion. The ischaemia was induced by 4-hour occlusion of both common carotid arteries and was followed by reperfusion of different duration (10, 30 or 60 min). The extent of lipid peroxidation was determined by measurement of conjugated dienes (CD) and TBA reactive products. Maximal values of CD and TBA reactive products were found after 10- and 30-minute reperfusion. This indicated the most suitable time interval for studying the effect of antioxidants and oxygen radical scavengers in this model of brain ischaemia.  相似文献   

6.
Oxygen-dependent reperfusion injury in the isolated rat lung.   总被引:3,自引:0,他引:3  
To further define the relationship between oxygen dependence of lung injury during ischemia and ischemia-reperfusion, we used the isolated, perfused, and ventilated rat lung model, so that oxygenation and perfusion could be separated. During ischemia, lungs were ventilated with various oxygen concentrations and then ventilated with 95% oxygen during the 60-min reperfusion period. Other lungs were ventilated with 0% oxygen (nitrogen) during ischemia, and the reperfusion phase oxygen concentration was varied. Tissue and perfusate lipid peroxidation products (thiobarbituric acid-reactive substances and conjugated dienes), dry-to-wet weight ratio, and lactate dehydrogenase were measured as indexes of lung damage. In addition, electron microscopy of some lungs was performed. Results demonstrate an oxygen dependence of lipid peroxidation in both the ischemic and reperfusion phases, but lipid peroxidation is severalfold greater in the reperfusion than in the ischemic phase. Products of lipid peroxidation closely correlate with indexes of lung injury (dry-to-wet weight ratio, lactate dehydrogenase, and electron microscopy).  相似文献   

7.
《Free radical research》2013,47(3-6):285-291
Oxygen-derived free radicals have been implicated as possible mediators in the development of tissue injury induced by ischemia and reperfusion. Clamping of the celiac artery in rats reduced the gastric mucosal blood flow to 10% of that measured before the clamping. The area of gastric erosions and thiobarbituric acid (TBA) reactants in gastric mucosa were significantly increased 60 and 90 min after clamping. These changes were inhibited by treatment with SOD and catalase. Thirty and 60 min after reoxyganation, produced by removal of the clamps following 30 min of ischemia, gastric mucosal injury and the increase in TBA reactants were markedly aggravated compared with those induced by ischemia alone. SOD and catalase significantly inhibited these changes. The serum a-tocopherol/cholesterol ratio, an index of in vivo lipid peroxidation, was significantly decreased after long periods of ischemia (60 and 90 min), or after 30 and 60 min of reperfusion following 30 min of ischemia. These results indicated that active oxygen species and lipid peroxidation may play a role in the pathogenesis of gastric mucosal injury induced by both ischemia alone and ischemia-reperfusion. Although, allopurinol inhibited the formation of gastric mucosal injury and the increase in TBA reactants in gastric mucosa, the depletion of polymorphonuclear leukocytes (PMN) counts induced by an injection of anti-rat PMN antibody did not inhibit these changes. As compared with the hypoxanthine-xanthine oxidase system, PMN seem to play a relatively small part in the formation of gastric mucosal injury induced by ischemia-reperfusion.  相似文献   

8.
The signal transduction pathways triggering apoptotic mechanisms after ischemia/reperfusion may involve TNF- secretion, ceramide generation, and initiation of lipid peroxidation. In the present study involvement of the TNF-, sphingomyelin cycle, and lipid peroxidation in the initiation of apoptosis induced in liver cells by ischemia and reperfusion was investigated. Wistar rats were subjected to total liver ischemia (for 15, 30 min, and 1 h) followed by subsequent reperfusion. Ischemia caused sharp decrease of neutral sphingomyelinase activity. Activity of acidic sphingomyelinase initially decreased (during 15-30 min ischemia) but then increased (after 1 h of ischemic injury). Reperfusion of the ischemic lobe of the liver caused increase in neutral sphingomyelinase activity and decrease in acidic sphingomyelinase activity. A small amount of TNF- detected by immunoblotting analysis was accumulated in the ischemic area of liver rapidly and the content of this cytokine dramatically increased after the reperfusion. TNF- is known to induce free radical production. We found that the accumulation of TNF and increase of sphingomyelinase activity during the development of ischemic/reperfusion injury coincided with increase in content of lipid peroxidation products (conjugated dienes) and DNA degradation detected by gel electrophoresis. Recently it was shown that superoxide radicals are used as signaling molecules within the sphingomyelin pathway. This suggests the existence of cross-talk between the oxidation system and the sphingomyelin cycle in cells, which may have important implications for the initial phase and subsequent development of post-ischemic injury.  相似文献   

9.
Postconditioning (POC) is known as the phenomenon whereby brief intermittent ischemia applied at the onset of reperfusion following index ischemia limits myocardial infarct size. Whereas there is evidence that the algorithm of the POC stimulus is an important determinant of the protective efficacy, the importance of the duration of index ischemia on the outcome of the effects of POC has received little attention. Pentobarbital sodium-anesthetized Wistar rats were therefore subjected to index ischemia produced by coronary artery occlusions (CAO) of varying duration (15-120 min) followed by reperfusion, without or with postconditioning produced by three cycles of 30-s reperfusion and reocclusion (3POC30). 3POC30 limited infarct size produced by 45-min CAO (CAO45) from 45 +/- 3% to 31 +/- 5%, and CAO60 from 60 +/- 3% to 47 +/- 6% (both P < or = 0.05). In contrast, 3POC30 increased infarct size produced by CAO15 from 3 +/- 1% to 19 +/- 6% and CAO30 from 36 +/- 6 to 48 +/- 4% (both P < or = 0.05). This deleterious effect of 3POC30 was not stimulus sensitive because postconditioning with 3POC5 and 3POC15 after CAO30 also increased infarct size. The cardioprotection by 3POC30 after CAO60 was accompanied by an increased stimulation of Akt phosphorylation at 7 min of reperfusion and a 36% lower superoxide production, measured by dihydroethidium fluorescence, after 2 h of reperfusion. Consistent with these results, cardioprotection by 3POC30 was abolished by phosphatidylinositol-3-OH-kinase inhibition, as well as nitric oxide (NO) synthase inhibition. The deleterious effect of 3POC30 after CAO15 was accompanied by an increased superoxide production with no change in Akt phosphorylation and was not affected by NO synthase inhibition. In conclusion, the effect of cardiac POC depends critically on the duration of the index ischemia and can be either beneficial or detrimental. These paradoxical effects of POC may be related to the divergent effects on Akt phosphorylation and superoxide production.  相似文献   

10.
Antioxidant effects of antihypoxic drugs in cerebral ischemia]   总被引:5,自引:0,他引:5  
Cerebral ischemia in rats (both carotid arteries occlusion) during 30 min, 3 hours and recirculation (1 hour) after ischemia (30 min) stimulated diene conjugates and fluorescent products accumulation in brain tissue. Intraperitoneal injection of sodium hydroxybutyrate (100 mg/kg), bemitil (50 mg/kg), ethomersol (50 mg/kg) reduced brain lipid peroxidation and did not yield in this respect to emoxypin (5 mg/kg). In contrast to emoxypin, sodium hydroxybutyrate, bemitil and ethomersol had no antiradical activity.  相似文献   

11.
We investigate the effect of rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARgamma) with anti-inflammatory and anti-oxidative actions, on hippocampal injury and its roles in mitochondrial uncoupling protein 2 (UCP2) expression caused by transient global ischemia (TGI) in rats. Increased UCP2 expression was observed in mitochondria of hippocampal CA1 2-24h after TGI/reperfusion, with maximal expression levels at 6-18h. Administration of rosiglitazone to hippocampus 30min prior to the onset of TGI further enhanced mitochondrial UCP2 expression 2-6h following TGI/reperfusion. Rats subjected to TGI/reperfusion displayed a significant increase in lipid peroxidation, based on increased malondialdehyde (MDA) levels, in hippocampal CA1 mitochondria 2-6 h after reperfusion. Rosiglitazone significantly attenuated TGI/reperfusion-induced lipid peroxidation and suppressed hippocampal CA1 neuronal death based on the surviving neuronal counts. In conclusion, our results provide correlative evidence for the "PPARgamma-->UCP2-->neuroprotection" cascade in ischemic brain injury.  相似文献   

12.
Oxidative stress is a recognized factor of ischemia reperfusion injury. It shares damage of lipids (LPO) and proteins (PPO), and consequently might cause changes in activity of transport systems. Global 15 min ischemia followed by 2, 24 and 48 hour reperfusion was induced by four-vessel occlusion in Wistar rats of both sexes. Levels of TBARS and conjugated dienes as parameters of LPO were analyzed in forebrain homogenates. Concentrations of total free sulfhydryl (SH) groups and emission spectra of tryptophan were measured to quantify PPO. Our results indicate that lipid peroxidation and protein oxidation occurs mainly during the period of reperfusion. However, significant increase in the level of conjugated dienes can be detected already after 15 min ischemia. Attack of proteins by free radicals leads to modification in structure of proteins seen as a decrease of free SH groups and tryptophan fluorescence. Ischemia/reperfusion induces formation of lipid peroxidation products as well as protein modifications.  相似文献   

13.
We hypothesize that early ischemic preconditioning (IPC) can afford protection against focal brief and prolonged cerebral ischemia with subsequent reperfusion as well as permanent brain ischemia in rats by amelioration of regional cerebral blood flow. Adult male Wistar rats (n=97) were subjected to transient (30 and 60 minutes) and permanent middle cerebral artery (MCA) occlusion. IPC protocol consisted of two episodes of 5-min common carotid artery occlusion + 5-min reperfusion prior to test ischemia either followed by 48 hours of reperfusion or not. Triphenyltetrazolium chloride and Evans blue were used for delineation of infarct size and anatomical area at risk (comprises ischemic penumbra and ischemic core), respectively. Blood flow in the MCA vascular bed was measured with use of Doppler ultrasound. The IPC resulted in significant infarct size limitation in both transient and permanent MCA occlusion. Importantly, IPC caused significant reduction of area at risk after 30 min of focal ischemia as compared to controls [med(min-max) 11.4% (3.59-2 0.35%) vs. 2.47% (0.8-9.31%), p = 0.018] but it failed to influence area at risk after 5 min of ischemia [med(min-max) 7.61% (6.32-10.87%) vs. 8.2% (4.87-9.65%), p > 0.05]. No differences in blood flow were found between IPC and control groups using Doppler ultrasound. This is suggestive of the fact that IPC does not really influence blood flow in the large cerebral arteries such as MCA but it might have some effect on smaller arteries. It seems that, along with well established cytoprotective effects of IPC, IPC-mediated reduction of area at risk by means of improvement in local cerebral blood flow may contribute to infarct size limitation after focal transient and permanent brain ischemia in rats.  相似文献   

14.
This study represents results of investigation carried out to determine the endothelium-protective effect of early and late phases of brain ischemic preconditioning as well as local and remote adaptation. The experiments were performed on adult male rats. Prolonged 30-min four vessels brain ischemia followed by 120-min reperfusion on carotid arteries, was performed (control group). Early and late local ischemic preconditioning was due to both 5-min ischemia and 30-min and 48 h reperfusion respectively on carotid arteries. Remote ischemic preconditioning was caused by 30-min ischemia and also by 15-min and 48 h reperfusion, respectively (early and late phases of adaptation) on femoral artery before prolonged brain ischemia described above. To estimate the role of nitric oxide in ischemic adaptation, mechanisms involved both nonselective blocker of NO-synthesis (N omega-nitro-L-arginine) in the time of early adaptation phase and the relatively selective iNOS inhibitor S-methylisothiourea sulfate, given before sustained brain ischemia, on the late preconditioning. Registration of brain blood flow was made by ultrasonic high-frequency Doppler device. Degree of brain edema was studied and evaluation of desquamated endothelial cells in blood was carried out. Early and late phases of local ischemic preconditioning were found to improve the brain blood flow and level of circulatory endothelial cells as well as to reduce degree of edema. The endothelium-protective effect of remote ischemic preconditioning has been proved in this study only on the late phase. Nitric oxygen was found to be important endothelium-protective factor in ischemic preconditioning.  相似文献   

15.
We recently reported that hyperthyroidism affects the heart response to ischemia/reperfusion. A significant tachycardia during reperfusion was associated with an increase in the oxidative stress of hearts from T3-treated animals. In the present study we checked the possible role of nitric oxide (NO) in this major stress induced by the hyperthyroid state. We compared the functional recovery from ischemia/reperfusion of Langendorff preparations from euthyroid (E) and hyperthyroid (H, ten daily intraperitoneal injections of T3, 10 microg/100 g body weight) rats, in the presence and in the absence of 0.2 mM Nomega-nitro-L-arginine (L-NNA). At the end of the ischemia/reperfusion protocol (10 min preischemic perfusion, 20 min global ischemia, 30 min reperfusion) lipid peroxidation, antioxidant capacity (CA) and susceptibility to in vitro oxidative stress were determined on heart homogenates. The main effect of hyperthyroidism on the reperfusion functional response was confirmed to be a strong tachycardic response (154% recovery at 25 min reperfusion) accompanied by a low recovery in both left ventricular diastolic pressure (LVDP) and left ventricular dP/dtmax. This functional response was associated with a reduction in CA and an increase in both lipid peroxidation and susceptibility to oxidative stress. Perfusion of hearts with L-NNA per se had small but significant negative chronotropic and positive inotropic effects on preischemic performance of euthyroid rat hearts only. More importantly, L-NNA perfusion completely blocked the reperfusion tachycardic response in the hyperthyroid rats. Concomitantly, myocardium oxidative state (lipid peroxidation, CA and in vitro susceptibility to oxidative stress) of L-NNA perfused hearts was similar to that of E animals. These results suggest that the higher reperfusion-induced injury occurring in hyperthyroid animals is associated with overproduction of nitric oxide.  相似文献   

16.
Ischemic preconditioning provides a way of protecting organs from damage inflicted with prolonged ischemia-reperfusion. In this study, we investigated the mechanism of ischemic preconditioning involved in inhibition of prolonged ischemia-reperfusion-induced mucosal apoptosis in rat small intestine. Ischemic preconditioning was triggered by a transient occlusion of the superior mesenteric artery followed by reperfusion. Ischemia-reperfusion was induced by 60-min occlusion of the superior mesenteric artery followed by 60-min reperfusion in the small intestine. Ischemia-reperfusion alone induced mucosal apoptosis and mitochondrial respiratory dysfunction via promoted reactive oxygen species generation, reduced mitochondrial glutathione oxidation, increased mitochondrial lipid peroxidation, reduced mitochondrial membrane potential, and enhanced release of cytochrome c from mitochondria to activate caspase-9 and caspase-6 in the small intestine. Pretreatment with 20-min ischemia followed by 5-min reperfusion significantly inhibited the prolonged ischemia-reperfusion-induced mucosal apoptosis by 30%. Ischemic preconditioning ameliorated mitochondrial respiratory dysfunction by 50%, reduced reactive oxygen species generation by 38%, and suppressed mitochondrial lipid peroxidation by 36%, resulting in improvement of the mitochondrial membrane potential and prevention of cytochrome c release as well as caspase-6 activation. Results suggest that ischemic preconditioning attenuated ischemia-reperfusion-induced mucosal apoptosis partly by inhibiting the reactive oxygen species-mediated mitochondria-dependent pathway in the rat small intestine.  相似文献   

17.
Blood-brain barrier (BBB) leakage plays a role in the pathogenesis of many pathological states of the brain including ischemia and some neurodegenerative disorders. In recent years, erythropoietin (EPO) has been shown to exert neuroprotection in many pathological conditions including ischemia in the brain. This study aimed to investigate the effects of EPO on BBB integrity, infarct size and lipid peroxidation following global brain ischemia/reperfusion in rats. Wistar male rats were divided into four groups (each group n=8); Group I; control group (sham-operated), Group II; ischemia/reperfusion group, Group III; EPO treated group (24 h before decapitation--000 U/kg r-Hu EPO i.p.), Group IV; EPO+ ischemia/reperfusion group (24 h before ischemia/reperfusion--3000 U/kg r-Hu EPO i.p.). Global brain ischemia was produced by the combination of bilateral common carotid arteries occlusion and hemorrhagic hypotension. Macroscopical and spectrophotometrical measurement of Evans Blue (EB) leakage was observed for BBB integrity. Infarct size was calculated based on 2,3,5-triphenyltetrazolium chloride (TTC) staining. Lipid peroxidation in the brain tissue was determined as the concentration of thiobarbituric acid-reactive substances (TBARS) for each group. Ischemic insult caused bilateral and regional BBB breakdown (hippocampus, cortex, corpus striatum, midbrain, brain stem and thalamus). EPO pretreatment reduced BBB disruption, infarct size and lipid peroxide levels in brain tissue with 20 min ischemia and 20 min reperfusion. These results suggest that EPO plays an important role in protecting against brain ischemia/reperfusion through inhibiting lipid peroxidation and decreasing BBB disruption.  相似文献   

18.
Prolonged ischemia amplified iscehemia/reperfusion (IR) induced renal apoptosis and autophagy. We hypothesize that ischemic conditioning (IC) by a briefly intermittent reperfusion during a prolonged ischemic phase may ameliorate IR induced renal dysfunction. We evaluated the antioxidant/oxidant mechanism, autophagy and apoptosis in the uninephrectomized Wistar rats subjected to sham control, 4 stages of 15-min IC (I15 × 4), 2 stages of 30-min IC (I30 × 2), and total 60-min ischema (I60) in the kidney followed by 4 or 24 hours of reperfusion. By use of ATP assay, monitoring O2 -. amounts, autophagy and apoptosis analysis of rat kidneys, I60 followed by 4 hours of reperfusion decreased renal ATP and enhanced reactive oxygen species (ROS) level and proapoptotic and autophagic mechanisms, including enhanced Bax/Bcl-2 ratio, cytochrome C release, active caspase 3, poly-(ADP-ribose)-polymerase (PARP) degradation fragments, microtubule-associated protein light chain 3 (LC3) and Beclin-1 expression and subsequently tubular apoptosis and autophagy associated with elevated blood urea nitrogen and creatinine level. I30 × 2, not I15 × 4 decreased ROS production and cytochrome C release, increased Manganese superoxide dismutase (MnSOD), Copper-Zn superoxide dismutase (CuZnSOD) and catalase expression and provided a more efficient protection than I60 against IR induced tubular apoptosis and autophagy and blood urea nitrogen and creatinine level. We conclude that 60-min renal ischemia enhanced renal tubular oxidative stress, proapoptosis and autophagy in the rat kidneys. Two stages of 30-min ischemia with 3-min reperfusion significantly preserved renal ATP content, increased antioxidant defense mechanisms and decreased ischemia/reperfusion enhanced renal tubular oxidative stress, cytosolic cytochrome C release, proapoptosis and autophagy in rat kidneys.  相似文献   

19.
The objective of the present experiment was to study age peculiarities of free radical protein oxidation and lipid peroxidation in brain of 1.5-month-old and 12-month-old rats with drug-induced hypothyroidism. It has been shown that hypothyroidism in both 1.5-month and 12-month old rat is accompanied by the oxidative stress in the brain. It manifests by an increase of content of lipid peroxidation products and protein carbonyls in mitochondrial and microsomal fractions. Hypothyroidism decreases the prooxidant effect of exercises on the brain mitochondria.  相似文献   

20.
Neutrophil activation and tumor necrosis factor-alpha (TNF-alpha) induction play a critical role in ischemia-reperfusion-induced intestinal inflammation. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, has recently been implicated as a regulator of inflammatory responses. The aim of the present study was to determine whether pioglitazone, a specific PPAR-gamma ligand, can ameliorate reperfusion-induced intestinal injury in rats, and whether the agent can inhibit the increase in neutrophil accumulation associated with TNF-alpha expression. Intestinal damage was induced in male Sprague-Dawley rats by clamping the superior mesenteric artery for 30 min followed by reperfusion. Reperfusion after 30 min ischemia resulted in an increase in luminal protein concentrations with levels reaching a maximum after 60 min of reperfusion. In contrast, pretreatment with pioglitazone 2 h before ischemia inhibited the increase in luminal protein concentrations after 60 min reperfusion in a dose-dependent manner (1-30 mg/kg). The increase in tissue-associated myeloperoxidase activity, an index of neutrophil infiltration, after reperfusion was significantly inhibited by pretreatment with pioglitazone. Pioglitazone also inhibited increases in intestinal TNF-alpha protein and mRNA expression determined by ELISA and RT-PCR, respectively. In conclusion, activation of PPAR-gamma may represent a novel approach to the treatment of intestinal inflammation induced by ischemia-reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号