首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diminished calcium influx in lectin-stimulated T cells from old mice   总被引:3,自引:0,他引:3  
T lymphocytes from aged donors function poorly, but the biochemical basis for the defect remains uncertain. We tested the hypothesis that T cells from old mice had a diminished ability to transmit extracellular signals into the cytoplasm, by measuring intracellular free calcium concentrations (Cai) in T cells stimulated by the polyclonal activator concanavalin A (Con A). Using the second-generation fluorochrome indo-1 as a reporter of Cai, we found that the Con A-induced elevation of Cai levels is reduced both in rate and extent in old T cells, as compared to T cells from young mice. Flow cytometric analysis showed that this age-sensitive change represents a decline, with age, in the number of T cells that can respond to Con A by increasing their Cai above resting baseline levels (100-120 nM). These results thus show that defects in activation are manifested by T cells from old donors within the first 5 minutes of the activation process, and suggest that aging may lead to alterations either in the surface molecules that receive extracellular signals, or in the sequence of coupled events by which these extracellular signals bring about alterations in the intracellular ionic milieu.  相似文献   

2.
Erythrocytes from young and old rats were separated into four age fractions by density-gradient centrifugation. The specific activities per cell were determined for glucose-6-phosphate dehydrogenase (EC 1.1.1.49), glutathione peroxidase (EC 1.11.1.9), glutathione reductase (EC 1.6.4.2) and catalase (EC 1.11.1.6). Decreased specific activities were observed with increasing cell age for all four enzymes in both young and old animals. In addition, significant differences in the activities of these enzymes were observed between cells of the same age fraction from young and old donors. Susceptibility of fractionated erythrocytes to oxidative attack in vitro generated by incubation with xanthine/xanthine oxidase increased with both cell and animal age. The amount of membrane-lipid peroxidation also increased with cell and animal aging, as measured by both thiobarbituric acid and fluorescent chromolipid assays. Increases of 2-3-fold in the contents of lipid peroxides were observed between the youngest and oldest age fractions of young rats. Lipid peroxide contents in young cells of old animals were equal to those in old erythrocytes from young rats and increased by 30% with cell aging in the old donors. These results suggest that the extent of enzymic protection against oxidative and peroxidative damage decreases with erythrocyte aging. More importantly, enzymic protection in cells of old rats is considerably decreased already in the early stages of their lifespan.  相似文献   

3.
Infections with variant Creutzfeldt-Jakob disease (vCJD) have almost exclusively occurred in young patients, but the reasons for this age distribution are uncertain. Our data suggest that the pathogenesis of many peripherally acquired transmissible spongiform encephalopathy (TSE) agents is less efficient in aged individuals. Four vCJD cases linked to transfusion of vCJD-contaminated blood or blood products have been described. Three cases occurred in elderly patients, implying that intravenous exposure is more efficient in aged individuals than other peripheral routes. To test this hypothesis, young (6 to 8 weeks old) and aged (600 days old) mice were injected intravenously with a TSE agent. In aged and young mice, the intravenous route was more efficient than other peripheral routes of TSE agent exposure. However, in aged mice, disease pathogenesis was significantly reduced. Although most aged mice failed to develop clinical disease during their life spans, many showed histopathological signs of TSE disease in their brains. Thus, the effects of age on intravenous TSE pathogenesis may lead to significant levels of subclinical disease in the population. After peripheral exposure, many TSE agents accumulate upon follicular dendritic cells (FDCs) in lymphoid tissues before they infect the brain. In aged spleens, PrP(C) expression and TSE agent accumulation upon FDCs were reduced. Furthermore, the splenic marginal zone microarchitecture was substantially disturbed, adversely affecting the delivery of immune complexes to FDCs. This study is the first to suggest that the effects of aging on the microarchitecture and the function of the splenic marginal zone significantly influence the pathogenesis of an important pathogen.  相似文献   

4.
Young and old red blood cells, separated by centrifugation on the basis of differences in cell density, were submitted to phagocytosis by either autologous human alveolar macrophages or syngeneic murine bone-marrow macrophages. Young cells adhere to macrophages, but to a much smaller extent than old ones. The influence of both type and quality of the separation procedure on the differences observed between the two erythrocyte subpopulations is discussed in the light of the half-life times of murine young and old red blood cells. Fractionation according to age was obtained following the method of Murphy (1973) and glutamate oxalo-acetate transaminase activity was measured and used as an indicator of both cell age and separation.  相似文献   

5.
6.
To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin or X-ray irradiation. Response to the damage was different between young and old cells; loss of p21(sdi1) expression in spite of p53(S1?) activation in old cells along with [3H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21(sdi1) expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.  相似文献   

7.
BACKGROUND: In a previous study we demonstrated the existence of numerical and functional alterations of gammadelta T cells in healthy elderly. Recently, we analysed the involvement of gammadelta T lymphocytes in malignant melanoma, describing a lower frequency of circulating gammadelta T cells, an altered pattern of cytokine production, and an impaired in vitro expansion of these cells in primary cutaneous melanoma patients. METHODS: In this study we investigated the existence of numerical and functional alterations of circulating gammadelta T cells in young/adult and old melanoma patients, comparing the data obtained with age-matched healthy subjects. RESULTS: We demonstrated that the number of circulating gammadelta+ T cells was significantly and similarly reduced in young/adult and old melanoma patients and in old healthy subjects in comparison with young healthy donors. The decrease was due to a reduction of Vdelta2 T cells whereas the number of Vdelta1 T cells was not affected. A higher percentage of gammadelta+ T cells producing TNF-alpha was found in old healthy donors, whereas a reduced number of TNF-alpha-producing gammadelta+ T cells was present in melanoma patients independently by age. No significant difference was observed in IFN-gamma production. After a 10-day in vitro culture, both the percentage and the expansion index of gammadelta T cells, and in particular of Vdelta2 subset, were significantly and similarly reduced both in young/adult and old melanoma patients, and in healthy aged people, in comparison with young/adult healthy subjects. CONCLUSIONS: Our study demonstrates that the numerical and functional impairment of gammadelta T cells found in melanoma patients is not correlated with age and that it has characteristics very similar to the alterations of gammadelta T cells found in old healthy subjects. We suggest that a similar impairment of gammadelta T cell population may be related to the increased susceptibility to tumors present in the elderly as well as in the pathogenesis of malignant melanoma.  相似文献   

8.
Several reports have shown that individual mitochondrial DNA (mtDNA) deletions accumulate with age. However, the overall extent of somatic mtDNA damage with age remains unclear. We have utilized full-length PCR to concurrently screen for multiple mtDNA rearrangements in total DNA extracted from skeletal muscle derived from physiologically normal individuals (n = 35). This revealed that both the number and variety of mtDNA rearrangements increases dramatically between young and old individuals (P < 0.0001). We further examined the mtDNA from both the younger and older subjects by Southern blot analysis and observed an age-related increase in mtDNA(s) comparable in size to mtDNA products unique to patients with known mtDNA deletions. These data imply that a wide spectrum of mtDNA rearrangements accumulate in old individuals, which correlates with the marked age related decrease in OXPHOS capacity observed in post-mitotic tissues.  相似文献   

9.
Aging is characterized by reduced tissue regenerative capacity attributed to a diminished responsiveness of tissue‐specific stem cells. With increasing age, resident precursor cells in muscle tissues show a markedly impaired propensity to proliferate in response to damage. However, exposure to factors present in the serum of young mice restores the regenerative capacity of aged precursor cells. As pregnancy represents a unique biological model of a partially shared blood system between young and old organisms, we hypothesized that pregnancy in aged mice would have a rejuvenating effect on the mother. To test this hypothesis, we assessed muscle regeneration in response to injury in young and aged pregnant and nonpregnant mice. Muscle regeneration in the aged pregnant mice was improved relative to that in age‐matched nonpregnant mice. The beneficial effect of pregnancy was transient, lasting up to 2 months after delivery, and appeared to be attributable to activation of satellite cells via the Notch signaling pathway, thus supporting the possibility that pregnancy induces activation of aged dormant muscle progenitor cells.  相似文献   

10.
Studies have been performed on erythrocytes that have been subjected to a low shear stress of less than 100 dyn/cm2 in a cone-and-plate viscometer. Alterations that were observed included decreased red cell survival, increased osmotic fragility, changes in the cation permeability of the red cell membrane, and a reduction in membrane-associated acetylcholinesterase activity. Some of these alterations are similar to those accompanying aging. The observed data suggest that one segment of the erythrocyte population is more susceptible to shear-induced damage than the rest of the cells.  相似文献   

11.
To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin or X-ray irradiation. Response to the damage was different between young and old cells; loss of p21sdi1 expression in spite of p53S15 activation in old cells along with [3H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21sdi1 expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.  相似文献   

12.
Age-related alterations of antigen-specific T cell-mediated suppression have been examined in the 4-hydroxy-3-nitrophenyl acetyl (NP) system. Inducer suppressor T cells (Tsi) were activated in mice at the age of 3 mo (young) or 18 mo (old) by i.v. injection of NP-conjugated syngeneic spleen cells (SC). Spleen cells from the NP-SC-injected mice were subcultured in vitro with spleen cells from normal young or old mice to generate transducer suppressor T cells (Tst). Four days later subcultured cells were added to responder cell cultures 1 day before the PFC assays to trigger effector suppressor T cells (Tse). Responder cell cultures, containing NP-conjugated horse red blood cells (HRBC) and spleen cells from HRBC-primed young or old mice, were assayed on day 4 for anti-NP and anti-HRBC PFC. Suppression was found to be antigen specific and age restricted. NP-specific suppressor cells are easily induced in subculture if the Tsi and Tst cell populations are both derived from young or old mice. Conversely, if Tsi cells from young or old mice are subcultured with Tst cells from mice of a different age, suppression of the anti-NP PFC response is hardly observed. Age restriction was also found to operate in the interactions between subcultured and responder cell populations, indicating that age-matching is required for effective triggering of Tse cells by Tst cells. These results altogether suggest that aging may affect the recognition repertoire expressed in suppressor T cell subsets. Moreover, the finding that suppression is less efficient when exerted on responder spleen cells from old than from young mice provides an explanation for the increased frequency of autoimmune disorders in aging.  相似文献   

13.
The costs of reproduction are expected to be higher under unfavourable conditions, so that breeding in years of low food supply should have important costs. In addition, the costs of reproduction may be contingent on the age of individuals, and young growing and old senescent individuals should suffer higher costs than the prime-age ones. We tested these predictions by investigating the costs of reproduction as a function of food availability and age in female North American red squirrels using the long-term data on survival and reproduction. We found that the costs of reproduction were independent of food supply, and we did not detect any trade-off between the current and future reproduction. We also did not detect any survival cost of reproduction for the prime-age females, but found evidence for survival costs in yearlings and old (6 years or above) females with successfully breeding individuals having a lower chance of survival compared with unsuccessful or non-breeding ones. These results supported our prediction that the costs of reproduction depended on the age of female red squirrels and were higher in young growing and old senescent individuals. Our study also indicated that, in contrast to large herbivores, heterogeneity in individual quality and viability selection in red squirrels do not affect the study of trade-offs and of the age variation in life-history traits.  相似文献   

14.
The bioimpedance spectroscopy (BIS) parameters of the suspensions of young and old erythrocytes were studied. The separation of the erythrocytes by age was made by density gradient. The BIS parameters: extracellular (Re) and intracellular (Ri) fluid resistance, characteristic frequency (Fchar), cell membranes capacitance (Cm) and Alpha parameter of concentrate suspensions of young and old erythrocytes were measured on the BIA analyzer ABC-01 "Medass" in the frequency range 5-500 kHz. It was found that Re (300.4 +/- 30.0 Ohm and 261.2 +/- 21.8 Ohm for old and young respectively, p < 0.05), Ri (86.6 +/- 9.1 Ohm and 73.4 +/- 7.3 Ohm for old and young respectively, p < 0.001) and Alpha (0.305 +/- 0.003 and 0.302 +/- 0.001 for old and young respectively, p < 0.05) of the old erythrocytes suspensions were higher, than of the young one, and Fchar (308.3 +/- 42.0 kHz and 347.4 +/- 48.0 kHz for old and young respectively, p <0.05) and Cm (99.3 +/- 10.1 pF and 112.8 +/- 6.3 pF for old and young respectively, p < 0.01) of the old erythrocytes were lower, than of the young one. The found differences between electrical properties of the suspensions of young and old erythrocytes were obviously determined by the alterations of the red blood cells during aging (growth of intracellular hemoglobin concentration, erythrocytes rapprochement because of diminishing of surface negative charge, increase of red blood cell sphericity and cell membrane permeability for ions). Thus the BIS parameters are related to the erythrocyte aging.  相似文献   

15.
The biological mechanisms responsible for aging remain poorly understood. We propose that increases in DNA damage and mutations that occur with age result from a reduced ability to repair DNA damage. To test this hypothesis, we have measured the ability to repair DNA damage in vitro by the base excision repair (BER) pathway in tissues of young (4-month-old) and old (24-month-old) C57BL/6 mice. We find in all tissues tested (brain, liver, spleen and testes), the ability to repair damage is significantly reduced (50-75%; P<0.01) with age, and that the reduction in repair capacity seen with age correlates with decreased levels of DNA polymerase beta (beta-pol) enzymatic activity, protein and mRNA. To determine the biological relevance of this age-related decline in BER, we measured spontaneous and chemically induced lacI mutation frequency in young and old animals. In line with previous findings, we observed a three-fold increase in spontaneous mutation frequency in aged animals. Interestingly, lacI mutation frequency in response to dimethyl sulfate (DMS) does not significantly increase in young animals whereas identical exposure in aged animals results in a five-fold increase in mutation frequency. Because DMS induces DNA damage processed by the BER pathway, it is suggested that the increased mutagenicity of DMS with age is related to the decline in BER capacity that occurs with age. The inability of the BER pathway to repair damages that accumulate with age may provide a mechanistic explanation for the well-established phenotype of DNA damage accumulation with age.  相似文献   

16.
Birds exhibit exceptional longevity and are thus regarded as a convenient model to study the intrinsic mechanisms of aging. The oxidative stress theory of aging suggests that individuals age because molecules, cells, tissues, organs, and, ultimately, animals accumulate oxidative damage over time. Accumulation of damage progressively reduces the level of antioxidant defences that are expected to decline with age. To test this theory, we measured the resistance of red blood cells to free radical attack in a captive population of greater flamingo (Phoenicopterus ruber roseus) of known age ranging from 0.3 to 45 years. We observed a convex relationship with young adults (12–20 years old) having greater resistance to oxidative stress than immature flamingos (5 months old) and old flamingos (30–45 years old). Our results suggest that the antioxidant detoxifying system must go through a maturation process before being completely functional. It then declines in older adults, supporting the oxidative theory of aging. Oxidative stress could hence play a significant role in shaping the pattern of senescence in a very long-lived bird species.  相似文献   

17.
Mammalian red blood cell alpha-spectrin is ubiquitinated in vitro and in vivo [Corsi, D., Galluzzi, L., Crinelli, R., Magnani, M. (1995) J. Biol. Chem. 270, 8928-8935]. This process shows a cell age-dependent decrease, with senescent red blood cells having approximately one third of the amount of ubiquitinated alpha-spectrin found in young cells. In-vitro ubiquitination of alpha-spectrin was dependent on the source of the red cell membranes (those from older cells are less susceptible to ubiquitination than those from younger cells), on the source of ubiquitin-conjugating enzymes (those from older cells catalyze the process at a reduced rate compared to those from younger cells) and on the ubiquitin isopeptidase activity (which decreases during red cell ageing). However, once alpha-spectrin has been extracted from the membranes of young or old red blood cells, it is susceptible to ubiquitination to a similar extent regardless of source. This suggests that it is the membrane architecture, and not spectrin itself, that is responsible for the age-dependent decline in ubiquitination. Furthermore, spectrin oligomers, tetramers and dimers are also equally susceptible to ubiquitination. As spectrin ubiquitination occurs on domains alphaIII and alphaV of alpha-spectrin, and domain alphaV contains the nucleation site for the association of the alpha- and beta-spectrin chains, alterations in ubiquitination during red cell ageing could affect the stability and deformability of the erythrocyte membrane.  相似文献   

18.
Neurons decline in their functionality over time, and age-related neuronal alterations are associated with phenotypes of neurodegenerative diseases. In nonneural tissues, an infolded nuclear shape has been proposed as a hallmark of aged cells and neurons with infolded nuclei have also been reported to be associated with neuronal activity. Here, we performed time-lapse imaging in the visual cortex of Nex-Cre;SUN1-GFP mice. Nuclear infolding was observed within 10 min of stimulation in young nuclei, while the aged nuclei were already infolded pre-stimulation and showed reduced dynamics of the morphology. In young nuclei, the depletion of the stimuli restored the nucleus to a spherical shape and reduced the dynamic behavior, suggesting that nuclear infolding is a reversible process. We also found the aged nucleus to be stiffer than the young one, further relating to the age-associated loss of nuclear shape dynamics. We reveal temporal changes in the nuclear shape upon external stimulation and observe that these morphological dynamics decrease with age.  相似文献   

19.
Zhou J  Shi XM  Peng QS  Hua GP  Hua TM 《动物学研究》2011,32(5):533-539
对人类和动物的心理学研究证实,老年个体的视觉对比敏感度相对青年个体显著下降。为揭示其可能的神经机制,采用在体细胞外单细胞记录技术研究青、老年猫(Felis catus)初级视皮层(primary visual cortex,V1)细胞对不同视觉刺激对比度的调谐反应。结果显示,老年猫V1细胞对视觉刺激反应的平均对比敏感度比青年猫显著下降,这与灵长类报道的研究结果相一致,表明衰老影响视皮层细胞对视觉刺激反应的对比敏感度是灵长类和非灵长类哺乳动物中普遍存在的现象,并可能是介导老年性视觉对比敏感度下降的神经基础。另外,与青年猫相比,老年猫初级视皮层细胞对视觉刺激的反应性显著增强,信噪比下降,感受野显著增大,表明衰老导致的初级视皮层细胞对视觉刺激反应的对比敏感度下降伴随着皮层内抑制性作用减弱。  相似文献   

20.
Adult SHR aged 19-21 weeks, subjected to osmotic diuresis, responded to an intravenous 1.8% saline loading (15 ml/kg b.w.) with greater sodium excretion than age-matched WKY. Young (6-7 weeks old) SHR and WKY also responded to saline loading with an increased sodium excretion but there were no differences in the relative changes of sodium excretion between young WKY and SHR. In adult WKY, saline loading induced a faster erythrocyte 22Na uptake as compared with adult SHR or young WKY. This suggests that volume and/or sodium loading increased sodium turnover of red cells only in adult WKY. The sodium transport differences found in erythrocytes of adult SHR and WKY could be caused by some membrane differences or could be due to different hormonal and nonhormonal response(s) to saline loading. If similar alterations would also occur in other tissues, they might be important for the sodium excretion pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号