首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this study, amperometric biosensors based on rigid conducting composites are developed for the determination of lysine. These lysine biosensors consist of chemically immobilized lysine oxidase membranes attached to either graphite-methacrylate or peroxidase-modified graphite-methacrylate electrodes. The enzymatic degradation of lysine releases hydrogen peroxide, which is the basis of the amperometric detection. The direct oxidation of hydrogen peroxide is monitored at +1000 mV with a graphite-methacrylate electrode, while with the peroxidase-modified electrode reductive detection is performed. In addition, for the peroxidase-modified biocomposite electrode, both direct electron transfer and hydroquinone-mediated detection are studied. For the lysine biosensor based on the hydroquinone-mediated peroxidase biocomposite, the linear range is up to 1.6 x 10(-4) M, the sensitivity 11300 microA/M, the repeatability 1.8%, the detection limit 8.2 x 10(-7) M and the response time t95% is 42 s. The proposed biosensors are used to determine lysine in pharmaceutical samples. Results are consistent with those obtained with the standard method.  相似文献   

2.
We describe an optical biosensor for lysine based on the use of lysine decarboxylase and an optical transducer for detection of cadaverine which is formed as a result of enzymatic action. A plasticized PVC (polyvinyl chloride) membrane containing a lipophilic tartrate as the amine carrier acts as the optical cadaverine sensor. The transport of the cadaverine cation into the membrane is coupled to a transport of a proton (of the indicator dye) out of the membrane. This causes a spectral change of the indicator dye which can be related to the cadaverine concentration, provided the pH is kept constant. The enzymatic reaction is performed in an enzyme reactor which is part of a flow-through system. The dynamic range is from 0·1 to 100 mM for both cadaverine and lysine. While the cadaverine sensor is moderately selective (ethylamines, for example, interfere), the whole sensor system is highly specific for lysine, nicotine being the only major interferent.

Unlike other enzyme-based detection schemes where the production of CO2 (in case of decarboxylates) or consumption of oxygen (in case of oxidases) is measured, this scheme is based on the measurement of the organic ammonium ion (cadaverin cation) formed in the enzymatic reaction. The major advantage of this approach is that in many real samples there is a rather low and fairly constant background of organic amines. This is in contrast to sensors based on the measurements of oxygen consumption (in the case of amino acid oxidases) or carbon dioxide production (using decarboxylases), where the background levels of the respective gases (which are ubiquitous) have to be kept constant in order to specifically measure only the concentration changes caused by the enzymatic reaction, or need to be measured in an independent assay.  相似文献   


3.
A flow injection anlytical system based on a gas diffusion membrane module for ammonia and an ammonium flow-through potentiometric detector has been set up for measurement of L-glutamine and ammonium ions in hybridoma cell cultures. The main feature of the system is that the same basic analytical concept and equipment is used in both measurements, the only difference being for the determination of L-glutamine, in which the sample flows through an immobilized glutaminase cartridge. The conditions to enable the performance of both analysis consecutively, avoiding potential interferences by unwanted deamination of other compounds in the samples, have been determined. Finally, the proposed system has been compared with reference analytical methods for batch hybridoma cell culture experiments.  相似文献   

4.
The determination of titratable acid and ammonium ions in picomole amounts   总被引:4,自引:0,他引:4  
A methodological system mainly designed for the use on intratubular urine samples is described, which permits the determination of titratable acid and ammonium ions in samples of a few nanoliters. The pH measurements were performed by means of antimony micro electrodes, the construction of which are described in detail. The hydroxyl ions were added to the samples from a second antimony electrode system, by an electric current. The amount of hydroxyl ions liberated was equivalent to the amount of current used.The ammonium determinations were based upon the fact that hydrogen ions were liberated from the ammonium ions by formaldehyde. The hydrogen ions were titrated in the same manner as the titratable acid.The use of two electrode systems simultaneously inserted in the droplet permitted recordings of the titration curves. The magnitude of methodological errors of these ultramicro methods are the same as those of corresponding methods using milliliter volumes.  相似文献   

5.
A spectrophotometric method for simultaneous analysis of glycine and lysine is proposed by application of neural networks on the spectral kinetic data. The method is based on the reaction of glycine and lysine with 1,2-naphthoquinone-4-sulfonate (NQS) in slightly basic medium. On the basis of the difference in the rate between the two reactions, these two amino acids can be determined simultaneously in binary mixtures. Feed-forward neural networks have been trained to quantify considered amino acids in mixtures under optimum conditions. In this way, a one-layer network was trained. Sigmoidal and linear transfer functions were used in the hidden and output layers, respectively. Linear calibration graphs were obtained in the concentration range of 1 to 25microgml(-1) for glycine and 1 to 19microgml(-1) for lysine. The analytical performance of this method was characterized by the relative standard error. The proposed method was applied to the determination of considered amino acids in synthetic samples.  相似文献   

6.
A split-stream flow-injection analysis system is described for simultaneous determination of glucose and L-glutamine in serum-free hybridoma bioprocesses media. Amperometric measurement of glucose is based on anodic oxidation of hydrogen peroxide produced by immobilized glucose oxidase within a triple layer membrane of an integrated flow-through glucose-selective biosensor. Determination of L-glutamine is based on quantitating ammonium ions produced in a flow-through enzymes reactor containing immobilized glutaminase enzyme, and subsequent downstream potentiometric detection of these ions by a nonacting-based ion-selective polymer membrane electrode. Endogenous potassium and ammonium ion interference in the L-glutamine determination are eliminated by using a novel in-line tubular cation-exchange membrane unit to exchange these interferent species for cations undetectable by the membrane electrode. The first generation split-steam flow-injections system can assay 12 samples/h using direct injections of 50 muL of media samples, with linear responses to glucose in the range of 0.03 to 30mM, and log-linear response to L-glutamine from 0.1 to 10 mM. (c) 1993 Wiley & Sons, Inc.  相似文献   

7.
Lysine is an essential amino acid for both humans and animals; and it is usually the first or second limiting amino acid in most formulated diets. In order to estimate the lysine content in feeds and feed sources, rapid amino acid bioassays have been developed. The objective of this work is to assess a rapid assay for lysine supplementation in chicken feeds, using a luminescent Escherichia coli lysine-auxotrophic strain, to avoid prior thermal sterilization. An E. coli lysine auxotroph carrying a plasmid with lux genes was used as the test organism. The lysine assay was conducted using depleted auxotrophic cells in lysine samples. Luminescence was measured with a Dynex MLX luminometer after addition of the aldehyde substrate. Growth response (monitored as optical density at 600 nm) and light emission response of the assay E. coli strain were monitored to generate standard curves. Bioluminescent analysis of feed samples indicated that the method works well in the presence of a complex feed matrix. Comparison of both optical density and luminescent-based methods indicated that, when the assay takes place under optimal conditions, both methodologies correlated well ( r(2)=0.99). Except for the 0.64% lysine-supplemented feed, estimates for lysine based on the bacterial assay were over 80% (82-97%) of the theoretical values. Animal data showed that the bacterial bioluminescent method correlated well with the chick bioassay when diets with different levels of lysine supplementation were assayed for lysine bioavailability ( r(2)=0.97). Luminescent methodology coupled with a bacterial growth assay is a promising technique to assess lysine availability in supplemented animal feeds.  相似文献   

8.
9.
A recently reported methodology for amino acid analysis by HPLC has been adapted for quantification of N-epsilon-(2-propenal)lysine (a modified lysine by reaction with malondialdehyde that has been found in enzymatic digests of foods and in urine) in biological samples. We describe its use for investigating the in vitro degradation of N-epsilon-(2-propenal)lysine using rat tissue homogenates. Lysine dipeptide, used as a control in the incubation mixtures, and the lysine released by the hydrolytic action of the homogenates in the in vitro incubations are quantified in the same way. The samples are subjected to a cleanup prederivatization step using PD-10 disposable columns (Pharmacia). This allows precolumn derivatization with diethylethoxymethylenemalonate (50 min, 50 degrees C) and resolution of the derivatives of the compounds of interest by reversed-phase HPLC (binary gradient, 45 min) with quantification based on the uv absorption of the derivatives at 280 nm (detection limits below 1 pmol). The entire analysis takes 110 min. This method can be of general use for the determination of N-epsilon-(2-propenal)lysine in the context of research dealing with protein deterioration by reaction with malondialdehyde in biological systems and in foods. A method for the synthesis of N-epsilon-(2-propenal)lysine, used as external standard for the HPLC analysis, is described.  相似文献   

10.
11.
AIMS: To examine the utility of an Escherichia coli green fluorescent protein (GFP) containing biosensor for quantification of bioavailable lysine in selected feed samples under nonsterile conditions and to estimate the background fluorescence of analyzed feed samples and evaluate the risk of confounding GFP emission from the lysine assay organism. METHODS AND RESULTS: Escherichia coli lysine auxotroph GFP based biosensor was used to determine the percentage of bioavailable lysine in two samples of soybean-, cottonseed-, and meat and bone meal under nonsterile conditions. The fluorescence emitted by GFP was successfully measured using a spectrofluorimeter to monitor bacterial growth response to protein-derived lysine and lysine containing small peptides. The autofluorescence of analyzed feed samples at different concentrations could also be estimated. CONCLUSIONS: When feed protein concentrations are decreased, autofluorescence interference can be avoided. SIGNIFICANCE: The E. coli lysine auxotroph GFP-based biosensor can successfully be used for the determination of bioavailable lysine in these selected animal feed proteins under nonsterile conditions. IMPACT OF THE STUDY: E. coli GFP biosensor for lysine has potential for routine application in animal feeds.  相似文献   

12.
The aim of this study was to investigate whether the phases of the menstrual cycle affect lysine requirement in healthy adult females, as determined by the indicator amino acid oxidation (IAAO) method. Five healthy females with regular menstrual cycles were studied at seven graded levels of lysine intake, in random order, with an oral [13C]phenylalanine tracer protocol in both the follicular and luteal phases. A total of 14 studies were conducted for each subject. Breath and plasma samples were collected according to the standard IAAO protocol. Serum 17beta-estradiol and progesterone concentrations were measured on each IAAO study day. The rate of release of 13CO2 from [13C]phenylalanine oxidation (F13CO2) was measured, and a two-phase linear regression crossover model was applied to determine lysine requirement. F13CO2 was higher during the luteal phase (P < 0.001) and was positively associated with serum concentrations of 17beta-estradiol and progesterone. The F13CO2 data were adjusted for subjects and sex hormones and used to define breakpoints for lysine requirements. The lysine requirement of healthy females in the luteal phase was 37.7 mg.kg(-1).day(-1) and higher (P = 0.025) than that of females in the follicular phase (35.0 mg.kg(-1).day(-1)). At all lysine intake levels, plasma amino acids were lower and phenylalanine oxidation was higher in the luteal relative to the follicular phase. Therefore, we reason that the higher lysine requirement observed in the luteal phase is probably due to higher amino acid catabolism.  相似文献   

13.
Traditional potentiometric polyion-sensitive electrodes can only work effectively in samples with vigorous convection fulfilled by magnetic stirrer, electrode rotator, or other moving components. The dependence on complex moving parts prohibits the fabrication of compact, cost-effective, and energy-effective test devices from the commercial point of view. In this paper, a novel potentiometric sensing protocol without using any moving parts has been proposed for polycationic protamine. In contrast to traditional protamine-sensitive electrodes conditioned by discriminated ion (Na(+)), the proposed electrode is conditioned with primary ion (protamine). Upon a medium exchange from the conditioning solution into an unstirred sample solution without protamine, protamine loaded in the membrane is stripped into the aqueous phase via ion exchange with aqueous sodium ion, thereby inducing a large potential drop. Interestingly, when the sample solution initially contains protamine, the ion-exchange process has been found to be sensitively inhibited by the sample protamine, and thus the potential drop is suppressed, which forms the basis of the moving-part-free potentiometric polyion sensing strategy. Utilizing the digestion ability of protease to protamine, the electrode was employed to determine the activity of trypsin with a detection limit at least one order of magnitude lower than traditional potentiometric methods. The trypsin inhibitor in both buffer and plasma samples was also sensitively detected with the moving-part-free protamine-sensitive electrode. Finally, the ability of the proposed electrode to detect polyanionic heparin was demonstrated.  相似文献   

14.
Alkaline phosphatase catalyzes the hydrolytic cleavage of the P-F bond in monofluorophosphate with the subsequent release of fluoride ions. A kinetic potentiometric method is described in which a fluoride ion-selective electrode is used for the sensitive and selective measurement of the released F- for the determination of alkaline phosphatase activity. It is shown that monofluorophosphate can be used as an alternative substrate for alkaline phosphatase. The reaction demonstrates a well-defined correlation with the hydrolysis of the P-O bond in 4-nitrophenyl phosphate. The serum alkaline phosphatase was determined in human serum samples by the potentiometric technique, and the results obtained compared well with a standard spectrophotometric method.  相似文献   

15.
Two relatively simple electrochemical assay methods suitable for the measurement of plasminogen activators (including urokinase (u-PA), streptokinase (SK), and tissue plasminogen activator (t-PA)) in plasma samples are described. In one approach, the initial rate of decrease in the potentiometric response of a polycation-sensitive membrane electrode toward protamine is monitored after addition of a preincubated reaction mixture containing the sample and exogenous plasminogen. The plasmin formed from plasminogen by the activators catalyzes the decomposition of the arginine-rich protamine substrate, yielding smaller polycationic fragments that are not sensed by the electrode. Alternately, the sample, plasminogen, and protamine can be incubated together, and the remaining protamine in this reaction mixture can be measured at a fixed point in time by placing the electrode into the mixture and recording the electromotive force response. Working curves found with both methods for plasma samples spiked with varying levels of the activators cover the expected therapeutic activity ranges found in the plasma of patients treated with these "clot-busting" drugs.  相似文献   

16.
A new method has been developed to determine the extent of lysine hydroxylation in newly synthesized collagen. This method relies on the measurement of changes in the ratio of [3H]lysine:[14C]lysine in collagenase digests, resulting from loss of tritium from the C-5 position of lysine during hydroxylation. Lysine hydroxylation can be measured in the presence of large amounts of noncollagen proteins, and simultaneous quantitation of the relative rates of collagen and non-collagen protein production is obtained. The dual-label lysine method is simple, rapid, and accurate. There was a very good correlation between this method and column chromatography procedures currently used for the measurement of lysine hydroxylation.  相似文献   

17.
Excised wheat (Triticum aestivum L. var. Maris Freeman) and barley (Hordeum vulgare L. var. Maris Mink) embryos were grown on medium containing both nitrate and ammonium ions. Addition of lysine (1 mM) plus threonine (1 mM) caused a synergistic inhibition of growth measured by length of first leaf or dry weight. The inhibition was specifically relieved by methionine, homocysteine and homoserine. Threonine at 0.2–0.3 mM caused half-maximal inhibition of growth at all lysine concentrations whereas lysine increased the synergistic inhibition up to 3 mM. The inhibition is explained by a model in which lysine acts as a feedback inhibitor of aspartate kinase and threonine of homoserine dehydrogenase. This is compatible with published studies of the enzymes involved. The implications of these findings for using lysine plus threonine as a selection system for lysine-overproducing cereals are discussed.Abbreviations Lys Lysine - Thr Threonine - Met Methionine - Hser Homoserine - Hcys Homocysteine  相似文献   

18.
New methods for the determination of L-asparagine and arginine are described. Solutions containing L-asparagine were pumped through an asparaginase tube, which catalyzed the hydrolysis of L-asparagine to L-aspartis acid and ammonium ion. For L-arginine determination, solutions containing L-arginine were pumped through an arginase-urease tube. This dual enzyme tube catalyzed the conversion of L-arginine to L-ornithine, carbon dioxide, and ammonium ion. The ammonium ion concentrations in the effluent of the enzyme tubes were determined quantitatively by an ammounin-ion-selective electrode. The potentiometric response of the electrode was directly proportional to the logarithm of the concentration of L-asparagine and L-arginine in the range of 0.1-50 mM. An equation relating the electrode response and the substrate concentration is derived.  相似文献   

19.
J Bello 《Biopolymers》1992,32(5):491-496
Random copolymers of lysine and alanine, 2:1 and 1:1, were trimethylated on the lysine amino groups to quaternary ammonium groups. Methylated and unmethylated polymers were prepared with Cl- or ClO4- as the counterion. CD spectra were measured for increasing concentration of peptide without added salt, and at constant peptide concentration in increasing NaCl or NaClO4. Unmethylated peptides, as the chloride, form alpha-helix more readily than do the methylated peptides. The opposite occurs with ClO4- as counterion. The helix-promoting effect of methylated lysine residues (ClO4- counterion) is diminished by the presence of alanine, as compared with effects when lysine is the only type of residue. The effect of methylation of proteins on helix formation may depend on the types of anionic groups with which the protein may be involved.  相似文献   

20.
Blood carboxypeptidases play an important role in the regulation of fibrinolysis. We have proposed here the method for the assay of blood carboxypeptidase activity associated with coagulation/fibrinolysis using the natural substrate fibrin and the detection of basic amino acids arginine and lysine as products under conditions closely resembling those in vivo. Plasma samples from 15 patients with arterial hypertension have been investigated. Coagulation and subsequent fibrinolysis were initiated by addition of standard doses of thrombin and tissue plasminogen activator, respectively. Arginine and lysine concentrations before, during, and after completion of fibrinolysis were determined using HPLC. The parameters of fibrinolysis were evaluated by the clot turbidity assay. The coagulation/fibrinolysis cycle was accompanied by a significant increase in concentrations of arginine and lysine in the incubation mixture by 101 and 81%, respectively. The duration of fibrinolysis initiation significantly correlated with the degree of increase of these amino acids: r S = −0.733 and −0.761 for arginine and lysine, respectively (p < 0.05). Arginine generation had two maximums: one in the beginning of clot lysis and another one at the end of the lysis, whereas the lysine release occurred mainly in the middle of fibrinolysis. Thus, the carboxypeptidase activity associated with fibrinolysis can be considered as a local source of the essential amino acids originated from fibrin clot degradation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号