首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.  相似文献   

2.
Groups of recently diverged species offer invaluable glimpses into the history and genetic basis of speciation and phenotypic evolution. In this report, we combine phylogenetic and population-genetic approaches to reconstruct the evolutionary history of the Drosophila bipectinata species complex. This complex is a group of four closely related, largely sympatric species--D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae. Using the sequences of one mitochondrial and six nuclear loci, we show that D. bipectinata and D. parabipectinata are the two most closely related species, and that together with D. malerkotliana they form a monophyletic clade to which D. pseudoananassae is a relatively distant outgroup. Genetic divergence among D. bipectinata, D. parabipectinata and D. malerkotliana is extremely low, and we estimate that these species diverged only 283,000-385,000 years ago. We also find that mitochondrial DNA shows evidence of recent gene flow across species boundaries. Despite the low genetic divergence, species of the bipectinata complex show an unusually high degree of morphological differentiation. This contrast underscores the importance of understanding the genetic basis of functional differentiation among closely related species.  相似文献   

3.
4.
Traumatic insemination (TI) is a rare reproductive behaviour characterized by the transfer of sperm to the female via puncture wounds inflicted across her body wall. Here, we challenge the claim made by Kamimura (Kamimura 2007 Biol. Lett. 3, 401–404. (doi:10.1098/rsbl.2007.0192)) that males of species of the Drosophila bipectinata complex use a pair of claw-like processes (claws) to traumatically inseminate females: the claws are purported to puncture the female body wall and genital tract, and to inject sperm through the wounds into the lumen of her genital tract, bypassing the vaginal opening. This supposed case of TI is widely cited and featured in prominent subject reviews. We examined high-resolution scanning electron micrographs of the claws and failed to discover any obvious ‘groove’ for sperm transport. We demonstrated that sperm occurred in the female reproductive tract as a single-integrated unit, inconsistent with the claim that sperm are injected via paired processes. Laser ablation of the sharp terminal ends of the claws failed to inhibit insemination. We showed that the aedeagus in the complex delivers sperm through the vaginal opening, as in other Drosophila. The results refute the claim of TI in the Drosophila bipectinata species complex.  相似文献   

5.
Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, although we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a second chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities.  相似文献   

6.
I. R. Bock 《Chromosoma》1971,34(2):206-229
Twenty autosomal inversions were detected in the polytene chromosomes of larvae obtained by hybridizing inversion-free strains of the species of the bipectinata complex (D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae). Twenty autosomal inversions are also known as extant polymorphisms in these species; fifteen (possibly sixteen) of these inversions are different from those detected in the interspecific hybrids. The available evidence permits reconstruction of chromosome phylogenies deriving malerkotliana, pseudoananassae and a population ancestral to both bipectinata and parabipectinata directly from a common ancestral population. The results of the study support the Carson hypothesis of transitional homoselection during the processes of speciation.Part of this study was incorporated in a section of a thesis submitted for the degree of Doctor of Philosophy in the University of Queensland, Australia; the work was continued under support by a U.S. Public Health Service Research Grant No. GM-11609 from the National Institute of General Medical Sciences to Prof. M. R. Wheeler, University of Texas.  相似文献   

7.
《Animal behaviour》1986,34(4):1146-1159
The D. bipectinata complex contains four species which are sympatric over parts of their range. They are morphologically identical and hybridize in no-choice mating situations. They have similar but distinct courtship patterns and males of all species sing two songs, long song early and short song late in courtship. Each species has a unique song profile due to differences in at least one song parameter. This is circumstantial evidence that sounds function to maintain sexual isolation within the complex.  相似文献   

8.
Sawamura K  Roote J  Wu CI  Yamamoto MT 《Genetics》2004,166(2):789-796
Recent genetic analyses of closely related species of Drosophila have indicated that hybrid male sterility is the consequence of highly complex synergistic effects among multiple genes, both conspecific and heterospecific. On the contrary, much evidence suggests the presence of major genes causing hybrid female sterility and inviability in the less-related species, D. melanogaster and D. simulans. Does this contrast reflect the genetic distance between species? Or, generally, is the genetic basis of hybrid male sterility more complex than that of hybrid female sterility and inviability? To clarify this point, the D. simulans introgression of the cytological region 34D-36A to the D. melanogaster genome, which causes recessive male sterility, was dissected by recombination, deficiency, and complementation mapping. The 450-kb region between two genes, Suppressor of Hairless and snail, exhibited a strong effect on the sterility. Males are (semi-)sterile if this region of the introgression is made homozygous or hemizygous. But no genes in the region singly cause the sterility; this region has at least two genes, which in combination result in male sterility. Further, the males are less fertile when heterozygous with a larger introgression, which suggests that dominant modifiers enhance the effects of recessive genes of male sterility. Such an epistatic view, even in the less-related species, suggests that the genetic complexity is special to hybrid male sterility.  相似文献   

9.
The genetic basis of hybrid male sterility among three closely related species, Drosophila bipectinata, D. parabipectinata and D. malerkotliana has been investigated by using backcross analysis methods. The role of Y chromosome, major hybrid sterility (MHS) genes (genetic factors) and cytoplasm (non-genetic factor) have been studied in the hybrids of these three species. In the species pair, bipectinata--parabipectinata, Y chromosome introgression of parabipectinata in the genomic background of bipectinata and the reciprocal Y chromosome introgression were unsuccessful as all males in second backcross generation were sterile. Neither MHS genes nor cytoplasm was found important for sterility. This suggests the involvement of X-Y, X-autosomes or polygenic interactions in hybrid male sterility. In bipectinata--malerkotliana and parabipectinata--malerkotliana species pairs, Y chromosome substitution in reciprocal crosses did not affect male fertility. Backcross analyses also show no involvement of MHS genes or cytoplasm in hybrid male sterility in these two species pairs. Therefore, X- autosome interaction or polygenic interaction is supposed to be involved in hybrid male sterility in these two species pairs. These findings also provide evidence that even in closely related species, genetic interactions underlying hybrid male sterility may vary.  相似文献   

10.
11.
We have prepared reference polytene photographic maps as a standard sequence for the Drosophila bipectinata complex using structurally homozygous flies derived from a stock of Drosophila parabipectinata from Brunei, Borneo, in 1971. We found 87 inversions in the D. bipectinata complex and described their breakpoints on the reference maps. Only 2 arrangements were shared interspecifically: 2R-AB was shared with 3 species, D. parabipectinata, D. bipectinata, and Drosophila malerkotliana, and 3L-A was found in 2 species, D. parabipectinata and D. malerkotliana. The 2 subspecies of D. malerkotliana and the 2 subspecies of Drosophila pseudoananassae shared half of the total gene arrangements detected in each species. The number of different inversions found between species in the complex ranges from 7 (between D. parabipectinata and D. malerkotliana) to at least 24 (between D. bipectinata and D. pseudoananassae). On the basis of the characteristic differences of their gene arrangements, we propose a reliable chromosomal phylogeny of the D. bipectinata complex.  相似文献   

12.
13.
Banerjee P  Singh BN 《Genetica》2012,140(1-3):75-81
The degree and pattern of sexual isolation among closely related species can be utilized for predicting the direction of evolution and deriving a phylogeny. The Drosophila bipectinata species complex is a group of four morphologically very similar species, belonging to the ananassae subgroup of the melanogaster species group. Sexual isolation among the members of this complex was studied by employing the male-choice technique. To test the difference between the homogamic and heterogamic matings, chi-square values were calculated under the assumption of random mating and the degree of sexual isolation was measured by estimating isolation index. To test the difference in proportions of heterogamic matings between reciprocal crosses, normal deviate (z) was calculated. The direction of evolution among these species has been discussed in the light of models proposed by different workers. Our results suggest that while D. bipectinata, Drosophila parabipectinata and Drosophila malerkotliana are closely related to each other, D. pseudoananassae is distantly related to these three species. The species pairs D. bipectinata and D. parabipectinata and D. parabipectinata and D. malerkotliana show asymmetrical sexual isolation. Based on this, it is suggested that D. bipectinata and D. malerkotliana share a common ancestor where as D. parabipectinata has been derived from D. bipectinata. Their phylogenetic relationship has been discussed in the light of phylogenies suggested by earlier workers.  相似文献   

14.
Phenotypic or morphological differences among different populations and sexual dimorphism in certain metric traits were analysed in D. bipectinata complex. It was noticed that different populations of D. bipectinata species group harbour large amount of variation for these characters. In all the populations, morphometric characters such as lengths of femur, tibia and wing length, wing width, number of sternopleural bristles and bristles on epandrium varied significantly among populations. The study indicates that the morphological variations are due to the interplay of genetic and environmental endowments. Further, females had significantly larger values, for lengths of femur, tibia and wing length, wing width and sternopleural bristles.  相似文献   

15.
Chang AS  Noor MA 《Genetics》2007,176(1):343-349
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.  相似文献   

16.
Good JM  Dean MD  Nachman MW 《Genetics》2008,179(4):2213-2228
The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome.  相似文献   

17.
Chang AS  Bennett SM  Noor MA 《PloS one》2010,5(10):e15377
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号