首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strain CAST/Ei (CAST) mice exhibit unusually low levels of high density lipoproteins (HDL) as compared with most other strains of mice, including C57BL/6J (B6). This appears to be due in part to a functional deficiency of lecithin:cholesterol acyltransferase (LCAT). LCAT mRNA expression in CAST mice is normal, but the mice exhibit several characteristics consistent with functional deficiency. First, the activity and mass of LCAT in plasma and in HDL of CAST mice were reduced significantly. Second, the HDL of CAST mice were relatively poor in phospholipids and cholesteryl esters, but rich in free cholesterol and apolipoprotein A-I (apoA-I). Third, the adrenals of CAST mice were depleted of cholesteryl esters, a phenotype similar to that observed in LCAT- and acyl-CoA:cholesterol acyltransferase-deficient mice. Fourth, in common with LCAT-deficient mice, CAST mice contained triglyceride-rich lipoproteins with "panhandle"-like protrusions. To examine the genetic bases of these differences, we studied HDL lipid levels in an intercross between strain CAST and the common laboratory strain B6 on a low fat, chow diet as well as a high fat, atherogenic diet. HDL levels exhibited complex inheritance, as 12 quantitative trait loci with significant or suggestive likelihood of observed data scores were identified. Several of the loci occurred over plausible candidate genes and these were investigated.The results indicate that the functional LCAT deficiency is unlikely to be due to variations of the LCAT gene. Our results suggest that novel genes are likely to be important in the control of HDL metabolism, and they provide evidence of genetic factors influencing the interaction of LCAT with HDL.  相似文献   

2.
3.
Apolipoprotein (apo) A-I-containing lipoproteins can be separated into two subfractions, pre-beta HDL and alpha HDL (high density lipoproteins), based on differences in their electrophoretic mobility. In this report we present results indicating that these two subfractions are metabolically linked. When plasma was incubated for 2 h at 37 degrees C, apoA-I mass with pre-beta electrophoretic mobility disappeared. This shift in apoA-I mass to alpha electrophoretic mobility was blocked by the addition of either 1.4 mM DTNB or 10 mM menthol to the plasma prior to incubation, suggesting that lecithin:cholesterol acyltransferase (LCAT) activity was involved. There was no change in the electrophoretic mobility of either pre-beta HDL or alpha HDL when they were incubated with cholesterol-loaded fibroblasts. However, after exposure to the fibroblasts, the cholesterol content of the pre-beta HDL did increase approximately sixfold, suggesting that pre-beta HDL can associate with appreciable amounts of cellular cholesterol. Pre-beta HDL-like particles appear to be generated by the incubation of alpha HDL with cholesteryl ester transfer protein (CETP) and either very low density lipoproteins (VLDL) or low density lipoproteins (LDL). This generation of pre-beta HDL-like particles was documented both by immunoelectrophoresis and by molecular sieve chromatography. Based on these findings, we propose a cyclical model in which 1) apoA-I mass moves from pre-beta HDL to alpha HDL in connection with the action of LCAT and the generation of cholesteryl esters within the HDL, and 2) apoA-I moves from alpha HDL to pre-beta HDL in connection with the action of CETP and the movement of cholesteryl esters out of the HDL. Additionally, we propose that the relative plasma concentrations of pre-beta HDL and alpha HDL reflect the movement of cholesteryl esters through the HDL. Conditions that result in the accumulation of HDL cholesteryl esters will be associated with low concentrations of pre-beta HDL, whereas conditions that result in the depletion of HDL cholesteryl esters will be associated with elevated concentrations of pre-beta HDL. This postulate is consistent with published findings in patients with hypertriglyceridemia and LCAT deficiency.  相似文献   

4.
The effects of lecithin-cholesterol acyltransferase (LCAT) on the transfer of cholesterol esters mediated by lipid transfer protein (LTP) and its affinity for lipid and lipoprotein particles were investigated. When the single bilayer vesicle preparations (containing phosphatidylcholine, cholesterol, cholesteryl ester, and apolipoprotein- (apo) A-I at the molar ratio of 90:30:1.2:0.18) or high density lipoprotein 3 (HDL3) were used as the cholesteryl ester donor and low density lipoproteins (LDL) as the acceptor, the transfer activity of LTP was enhanced by the addition of low concentrations of LCAT. In contrast, no enhancement of cholesteryl ester transfer was observed upon addition of LCAT to either the discoidal bilayer particle preparations (containing phosphatidylcholine, cholesterol, cholesteryl ester, and apo-A-I at the molar ratio of 90:30:1.2:1.0) or high density lipoprotein 2 (HDL2). Although both apo-A-I and apo-A-II promoted the transfer of cholesteryl ester from vesicles to LDL, the additional enhancement of the transfer by LCAT was observed only with the vesicles containing apo-A-I. Gel permeation chromatography of LTP/vesicle and LTP/HDL3 mixtures in the presence and absence of LCAT showed that the affinity of LTP for both the vesicles and HDL3 increased upon addition of LCAT. In contrast, neither HDL2 nor discoidal bilayer particles showed any significant enhancement of LTP binding upon addition of LCAT. By using LCAT covalently bound to Sepharose 4B, a maximal interaction between LTP and bound LCAT was shown to occur at the ionic strength of 0.16. Deviation from this ionic strength reduced the extent of the interaction. At the ionic strength of 0.01 and 0.5, the elution volume of LTP was identical to that of bovine serum albumin.  相似文献   

5.
The purpose of the present study was to test the hypothesis that lecithin:cholesterol acyltransferase (LCAT) deficiency would accelerate atherosclerosis development in low density lipoprotein (LDL) receptor (LDLr-/-) and apoE (apoE-/-) knockout mice. After 16 weeks of atherogenic diet (0.1% cholesterol, 10% calories from palm oil) consumption, LDLr-/- LCAT-/- double knockout mice, compared with LDLr-/- mice, had similar plasma concentrations of free (FC), esterified (EC), and apoB lipoprotein cholesterol, increased plasma concentrations of phospholipid and triglyceride, decreased HDL cholesterol, and 2-fold more aortic FC (142 +/- 28 versus 61 +/- 20 mg/g protein) and EC (102 +/- 27 versus 61+/- 27 mg/g). ApoE-/- LCAT-/- mice fed the atherogenic diet, compared with apoE-/- mice, had higher concentrations of plasma FC, EC, apoB lipoprotein cholesterol, and phospholipid, and significantly more aortic FC (149 +/- 62 versus 109 +/- 33 mg/g) and EC (101 +/- 23 versus 69 +/- 20 mg/g) than did the apoE-/- mice. LCAT deficiency resulted in a 12-fold increase in the ratio of saturated + monounsaturated to polyunsaturated cholesteryl esters in apoB lipoproteins in LDLr-/- mice and a 3-fold increase in the apoE-/- mice compared with their counterparts with active LCAT. We conclude that LCAT deficiency in LDLr-/- and apoE-/- mice fed an atherogenic diet resulted in increased aortic cholesterol deposition, likely due to a reduction in plasma HDL, an increased saturation of cholesteryl esters in apoB lipoproteins and, in the apoE-/- background, an increased plasma concentration of apoB lipoproteins.  相似文献   

6.
Previous studies with the human hepatoblastoma-derived HepG2 cell line in this laboratory have shown that these cells produce high density lipoproteins (HDL) that are similar to HDL isolated from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency. Experiments were, therefore, performed to determine whether HepG2 HDL could be transformed into plasma-like particles by incubation with LCAT. Concentrated HepG2 lipoproteins (d less than 1.235 g/ml) were incubated with purified LCAT or lipoprotein-deficient plasma (LPDP) for 4, 12, or 24 h at 37 degrees C. HDL isolated from control samples possessed excess phospholipid and unesterified cholesterol relative to plasma HDL and appeared as a mixed population of small spherical (7.8 +/- 1.3 nm) and larger discoidal particles (17.7 +/- 4.9 nm long axis) by electron microscopy. Nondenaturing gradient gel analysis (GGE) of control HDL showed major peaks banding at 7.4, 10.0, 11.1, 12.2, and 14.7 nm. Following 4-h LCAT and 12-h LPDP incubations, HepG2 HDL were mostly spherical by electron microscopy and showed major peaks at 10.1 and 8.1 nm (LCAT) and 10.0 and 8.4 nm (LPDP) by GGE; the particle size distribution was similar to that of plasma HDL. In addition, the chemical composition of HepG2 HDL at these incubation times approximated that of plasma HDL. Molar increases in HDL cholesteryl ester were accompanied by equimolar decreases in phospholipid and unesterified cholesterol. HepG2 low density lipoproteins (LDL) isolated from control samples showed a prominent protein band at 25.6 nm with GGE. Active LPDP or LCAT incubations resulted in the appearance of additional protein bands at 24.6 and 24.1 nm. No morphological changes were observed with electron microscopy. Chemical analysis indicated that the LDL cholesteryl ester formed was insufficient to account for phospholipid lost, suggesting that LCAT phospholipase activity occurred without concomitant cholesterol esterification.  相似文献   

7.
The extent to which lipid and apolipoprotein (apo) concentrations in tissue fluids are determined by those in plasma in normal humans is not known, as all studies to date have been performed on small numbers of subjects, often with dyslipidemia or lymphedema. Therefore, we quantified lipids, apolipoproteins, high density lipoprotein (HDL) lipids, and non-HDL lipids in prenodal leg lymph from 37 fasted ambulant healthy men. Lymph contained almost no triglycerides, but had higher concentrations of free glycerol than plasma. Unesterified cholesterol (UC), cholesteryl ester (CE), phosphatidylcholine (PC), and sphingomyelin (SPM) concentrations in whole lymph were not significantly correlated with those in plasma. HDL lipids, but not non-HDL lipids, were directly related to those in plasma. Lymph HDLs were enriched in UC. However, as the HDL cholesterol/non-HDL cholesterol ratio in lymph exceeded that in plasma, whole lymph nevertheless had a lower UC/CE ratio than plasma. Lymph also had a significantly higher SPM/PC ratio. The lymph/plasma (L/P) ratios of apolipoproteins were as follows: A-IV > A-I and A-II > C-III and E > B. Comparison with the L/P ratios of seven nonlipoprotein proteins suggested that apoA-IV was predominantly lipid free. Concentrations of apolipoproteins A-II, A-IV, C-III, and E in lymph, but not of apolipoproteins A-I or B, were positively correlated with those in plasma. The L/P ratios of apolipoproteins B, C-III, and E in two subjects with lipoprotein lipase (LPL) deficiency, and of apolipoproteins A-I and A-IV in a subject with lecithin:cholesterol acyltransferase (LCAT) deficiency, were low relative to those in normal subjects. Thus, the concentrations of lipids, apolipoproteins, and lipoproteins in human tissue fluid are determined only in part by their concentrations in plasma. Other factors, including the actions of LPL and LCAT, are at least as important.  相似文献   

8.
Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0–37.8] mg/dl) and slightly reduced in heterozygotes (218 [153–234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.  相似文献   

9.
Koukos G  Chroni A  Duka A  Kardassis D  Zannis VI 《Biochemistry》2007,46(37):10713-10721
To explain the etiology and find a mode of therapy of genetically determined low levels of high-density lipoprotein (HDL), we have generated recombinant adenoviruses expressing apolipoprotein A-I (apoA-I)(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN and studied their properties in vitro and in vivo. Both mutants were secreted efficiently from cells but had diminished capacity to activate lecithin/cholesterol acyltransferase (LCAT) in vitro. Adenovirus-mediated gene transfer of either of the two mutants in apoA-I-deficient (apoA-I-/-) mice resulted in greatly decreased total plasma cholesterol, apoA-I, and HDL cholesterol levels. The treatment also decreased the cholesteryl ester to total cholesterol ratio (CE/TC), caused accumulation of prebeta1-HDL and small size alpha4-HDL particles, and generated only few spherical HDL particles, as compared to mice expressing wild-type (WT) apoA-I. Simultaneous treatment of the mice with adenoviruses expressing either of the two mutants and human LCAT normalized the plasma apoA-I, HDL cholesterol levels, and the CE/TC ratio, restored normal prebeta- and alpha-HDL subpopulations, and generated spherical HDL. The study establishes that apoA-I(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN inhibit an early step in the biogenesis of HDL due to inefficient esterification of the cholesterol of the prebeta1-HDL particles by the endogenous LCAT. Both defects can be corrected by treatment with LCAT.  相似文献   

10.
Previous studies have provided detailed information on the formation of spherical high density lipoproteins (HDL) containing apolipoprotein (apo) A-I but no apoA-II (A-I HDL) by an lecithin:cholesterol acyltransferase (LCAT)-mediated process. In this study we have investigated the formation of spherical HDL containing both apoA-I and apoA-II (A-I/A-II HDL). Incubations were carried out containing discoidal A-I reconstituted HDL (rHDL), discoidal A-II rHDL, and low density lipoproteins in the absence or presence of LCAT. After the incubation, the rHDL were reisolated and subjected to immunoaffinity chromatography to determine whether A-I/A-II rHDL were formed. In the absence of LCAT, the majority of the rHDL remained as either A-I rHDL or A-II rHDL, with only a small amount of A-I/A-II rHDL present. By contrast, when LCAT was present, a substantial proportion of the reisolated rHDL were A-I/A-II rHDL. The identity of the particles was confirmed using apoA-I rocket electrophoresis. The formation of the A-I/A-II rHDL was influenced by the relative concentrations of the precursor discoidal A-I and A-II rHDL. The A-I/A-II rHDL included several populations of HDL-sized particles; the predominant population having a Stokes' diameter of 9.9 nm. The particles were spherical in shape and had an electrophoretic mobility slightly slower than that of the alpha-migrating HDL in human plasma. The apoA-I:apoA-II molar ratio of the A-I/A-II rHDL was 0.7:1. Their major lipid constituents were phospholipids, unesterified cholesterol, and cholesteryl esters. The results presented are consistent with LCAT promoting fusion of the A-I rHDL and A-II rHDL to form spherical A-I/A-II rHDL. We suggest that this process may be an important source of A-I/A-II HDL in human plasma.  相似文献   

11.
  • 1.1. Human endothelial cells (EA.hy 926 line) were loaded with cholesterol, using cationized LDL, and the effect of lecithin:cholesterol acyltransferase (LCAT) on cellular cholesterol efflux mediated by high density lipoproteins (HDL) was measured subsequently.
  • 2.2. In plasma, lecithin:cholesterol acyltransferase (LCAT) converts unesterified HDL cholesterol into cholesteryl esters, thereby maintaining the low UC/PL ratio of HDL. It was tested if further decrease in UC/PL ratio of HDL by LCAT influences cellular cholesterol efflux in vitro.
  • 3.3. Efflux was measured as the decrease of cellular cholesterol after 24 hr of incubation with various concentrations of HDL in the presence and absence of LCAT. LCAT from human plasma (about 3000-fold purified) was added to the cell culture, resulting in activity levels in the culture media of 60–70% of human serum.
  • 4.4. Although LCAT had a profound effect on HDL structure (UC/TC and UC/PL ratio's decreased), the enzyme did not enhance efflux of cellular cholesterol, using a wide range of HDL concentrations (0.05–2.00 mg HDL protein/ml).
  • 5.5. The data indicate that the extremely low unesterified cholesterol content of HDL, induced by LCAT, does not enhance efflux of cholesterol from loaded EA.hy 926 cells. It is concluded that the HDL composition (as isolated from plasma by ultracentrifugation) is optimal for uptake of cellular cholesterol.
  相似文献   

12.
Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (?30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL.  相似文献   

13.
The primary objectives of this study were to determine whether analogs to native discoidal apolipoprotein (apo)E-containing high-density lipoproteins (HDL) could be prepared in vitro, and if so, whether their conversion by lecithin-cholesterol acyltransferase (LCAT; EC 2.3.1.43) produced particles with properties comparable to those of core-containing, spherical, apoE-containing HDL in human plasma. Complexes composed of apoE and POPC, without and with incorporated unesterified cholesterol, were prepared by the cholate-dialysis technique. Gradient gel electrophoresis showed that these preparations contain discrete species both within (14-40 nm) and outside (10.8-14 nm) the size range of discoidal apoE-containing HDL reported in LCAT deficiency. The isolated complexes were discoidal particles whose size directly correlated with their POPC:apoE molar ratio: increasing this ratio resulted in an increase in larger complexes and a reduction in smaller ones. At all POPC:apoE molar ratios, size profiles included a major peak corresponding to a discoidal complex 14.4 nm long. Preparations with POPC:apoE molar ratios greater than 150:1 contained two distinct groups of complexes, also in the size range of discoidal apoE-containing HDL from patients with LCAT deficiency. Incorporation of unesterified cholesterol into preparations (molar ratio of 0.5:1, unesterified cholesterol:POPC) resulted in component profiles exhibiting a major peak corresponding to a discoidal complex 10.9 nm long. An increase of unesterified cholesterol and POPC (at the 0.5:1 molar ratio) in the initial mixture, increased the proportion of larger complexes in the profile. Incubation of isolated POPC-apoE discoidal complexes (mean sizes, 14.4 and 23.9 nm) with purified LCAT and a source of unesterified cholesterol converted the complexes to spherical, cholesteryl ester-containing products with mean diameters of 11.1 nm and 14.0 nm, corresponding to apoE-containing HDL found in normal plasma. Conversion of smaller cholesterol-containing discoidal complexes (mean size, 10.9 nm) under identical conditions resulted in spherical products 11.3, 13.3, and 14.7 nm across. The mean sizes of these conversion products compared favorably with those (mean diameter, 12.3 nm) of apoE-containing HDL of human plasma. This conversion of cholesterol-containing complexes is accompanied by a shift of some apoE to the LDL particle size interval. Our study indicates that apoE-containing complexes formed by the cholate-dialysis method include species similar to discoidal apoE-containing HDL and that incubation with LCAT converts most of them to spherical core-containing particles in the size range of plasma apoE-containing HDL. Plasma HDL particles containing apoE may arise in part from direct conversion of discoidal apoE-containing HDL by LCAT.  相似文献   

14.
In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R149A) were secreted efficiently from cells in culture. Their capacity to activate LCAT (lecithin:cholesterol acyltransferase) in vitro was greatly reduced, and their ability to promote ABCA1 (ATP-binding cassette transporter A1)-mediated cholesterol efflux was similar to that of WT (wild-type) apoA-I. Gene transfer of the three mutants in apoA-I-/- mice generated aberrant HDL phenotypes. The total plasma cholesterol of mice expressing the apoA-I(R160L)Oslo, apoA-I(R149A) and apoA-I(R151C)Paris mutants was reduced by 78, 59 and 61% and the apoA-I levels were reduced by 68, 64 and 55% respectively, as compared with mice expressing the WT apoA-I. The CE (cholesteryl ester)/TC (total cholesterol) ratio of HDL was decreased and the apoA-I was distributed in the HDL3 region. apoA-I(R160L)Oslo and apoA-I(R149A) promoted the formation of prebeta1 and alpha4-HDL subpopulations and gave a mixture of discoidal and spherical particles. apoA-I(R151C)Paris generated subpopulations of different sizes that migrate between prebeta and alpha-HDL and formed mostly spherical and a few discoidal particles. Simultaneous treatment of mice with adenovirus expressing any of the three mutants and human LCAT normalized plasma apoA-I, HDL cholesterol levels and the CE/TC ratio. It also led to the formation of spherical HDL particles consisting mostly of alpha-HDL subpopulations of larger size. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I.  相似文献   

15.
Density gradient ultracentrifugation was used to isolate and characterize the plasma lipoproteins from African green monkeys before and 24 and 48 h after subcutaneous injection of 300 micrograms/kg lipopolysaccharide (LPS) to induce an acute phase response. Compared with 0 h values, reductions occurred in plasma cholesterol (39%), high density lipoprotein (HDL) cholesterol (54%), lecithin:cholesterol acyltransferase (LCAT) activity (55%), and post-heparin plasma lipase activity (68%) 48 h after LPS injection while plasma triglyceride concentrations increased 700%. Cholesterol distribution among lipoproteins shifted from 7 to 41% in very low density lipoproteins (VLDL), 65 to 38% in low density lipoproteins (LDL), and 28 to 21% in HDL after LPS injection. At 48 h after LPS injection, all lipoprotein classes were relatively enriched in phospholipid and triglyceride and depleted of cholesteryl ester. The plasma concentration of all chemical constituents in VLDL was increased 3-9-fold within 48 h after LPS injection. By negative stain electron microscopy, HDL were discoidal in shape while VLDL and LDL appeared to have excess surface material present. Even though total HDL protein concentration in plasma was unaffected, the plasma mass of the smallest HDL subfractions (HDL3b,c) doubled while the mass of intermediate-sized subfractions (HDL3a) was dramatically decreased within 24 h after treatment. HDL became enriched in apoE, acquired apoSAA, and became depleted of apoA-I, A-II, and Cs by 48 h after LPS injection while apoB-100 remained the major apoprotein of VLDL and LDL. We conclude that administration of LPS to monkeys prevents normal intravascular metabolism of lipoproteins and results in the accumulation of relatively nascent forms of lipoproteins in plasma. These immature lipoproteins resemble those isolated from the recirculating perfusion of African green monkey livers, which are relatively deficient of LCAT activity and those isolated from the plasma of patients with familial LCAT deficiency.  相似文献   

16.
Plasma lecithin:cholesterol acyltransferase (LCAT) activity is increased during the clearance phase of alimentary lipemia induced by a high-fat test meal in normal subjects. Ultracentrifugal fractionation of high density lipoproteins (HDL) into HDL(2), HDL(3), and very high density (VHD) subfractions followed by analyses of lipid and protein components has been accomplished at intervals during alimentary lipemia to seek associations with enzyme changes. HDL(2) lipids and protein increased substantially, characterized primarily by enrichment with lecithin. HDL(3), which contain the main LCAT substrates, revealed increased triglycerides and generally reduced cholesteryl esters which were reciprocally correlated, demonstrating a phenomenon previously observed in vitro by others. Both changes correlated with LCAT activation, but partial correlation analysis indicated that ester content is primarily related to triglycerides rather than LCAT activity. The VHD cholesteryl esters and lysolecithin were also reduced. Plasma incubation experiments with inactivated LCAT showed that alimentary lipemic very low density lipoproteins (VLDL) could reduce levels of cholesteryl esters in HDL by a nonenzymatic mechanism. In vitro substitution of lipemic VLDL for postabsorptive VLDL resulted in enhanced reduction of cholesteryl esters in HDL(3) and VDH, but not in HDL(2), during incubation. Nevertheless, augmentation of LCAT activity did not result, indicating that cholesteryl ester removal from substrate lipoproteins is an unlikely explanation for activation. Since VHD and HDL(3), which contain the most active LCAT substrates, were also most clearly involved in transfers of esters to VLDL and low density lipoproteins, the suggestion that LCAT product lipoproteins are preferentially involved in nonenzymatic transfer and exchange is made. The main determinant of ester transfer, however, appears to be the level of VLDL, both in vitro and in vivo. Rose, H. G., and J. Juliano. Regulation of plasma lecithin: cholesteryl acyltransferase in man. III. Role of high density lipoprotein cholesteryl esters in the activating effect of a high-fat test meal.  相似文献   

17.
Although it is known that plasma lecithin:cholesterol acyltransferase (LCAT) is activated by several apolipoproteins (apo) including A-I, C-I, D, A-IV, and E, it is not clear what the physiological importance of having different apolipoprotein activators is. One possible explanation is that the activation by different apolipoproteins may result in the utilization of different species of phosphatidylcholine (PC), leading to the formation of different species of cholesteryl esters (CE). In order to determine this possibility, we analyzed the molecular species composition of PC and CE in two patients with familial deficiency of apoA-I and apoC-III. The LCAT activity, assayed by three different procedures, was found to be 36-63% of the control value. The lower LCAT activity, however, was due to deficiency of the enzyme rather than the absence of apoA-I. The patients' plasma was relatively enriched with sn-2 18:2 PC species reflecting the partial deficiency of LCAT activity. The fatty acid composition of plasma CE was not significantly different from that of controls. HPLC analysis of labeled CE formed after incubation of plasma with [C14]cholesterol showed no significant difference in the species of CE synthesized by the LCAT reaction. The transfer of pre-existing as well as newly formed CE from HDL to the apoB-containing lipoproteins was accelerated compared to control plasma. These results show that the absence of apoA-I does not significantly affect either the activity or the specificity of LCAT, and that the other apolipoprotein activators can substitute adequately for it.  相似文献   

18.
The impact of apolipoprotein C-I (apoC-I) deficiency on hepatic lipid metabolism was addressed in mice in the presence or the absence of cholesteryl ester transfer protein (CETP). In addition to the expected moderate reduction in plasma cholesterol levels, apoCIKO mice showed significant increases in the hepatic content of cholesteryl esters (+58%) and triglycerides (+118%) and in biliary cholesterol concentration (+35%) as compared with wild-type mice. In the presence of CETP, hepatic alterations resulting from apoC-I deficiency were enforced, with up to 58% and 302% increases in hepatic levels of cholesteryl esters and triglycerides in CETPTg/apoCIKO mice versus CETPTg mice, respectively. Biliary levels of cholesterol, phospholipids, and bile acids were increased by 88, 77, and 20%, respectively, whereas total cholesterol, HDL cholesterol, and triglyceride concentrations in plasma were further reduced in CETPTg/apoCIKO mice versus CETPTg mice. Finally, apoC-I deficiency was not associated with altered VLDL production rate. In line with the previously recognized inhibition of lipoprotein clearance by apoC-I, apoC-I deficiency led to decreased plasma lipid concentration, hepatic lipid accumulation, and increased biliary excretion of cholesterol. The effect was even greater when the alternate reverse cholesterol transport pathway via VLDL/LDL was boosted in the presence of CETP.  相似文献   

19.
Oral nicotine impairs clearance of plasma low density lipoproteins   总被引:1,自引:0,他引:1  
The effect of chronic oral nicotine intake on plasma low density lipoprotein (LDL) clearance, lipid transfer protein, and lecithin:cholesterol acyltransferase (LCAT) was examined in male atherosclerosis susceptible squirrel monkeys. Eighteen yearling primates were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine monkeys given liquid diet supplemented with nicotine at 6 mg/kg body wt/day for a two-year period. Averaged over 24 months of treatment, animals in the Nicotine group had significantly higher levels of plasma and LDL cholesterol compared to Controls while plasma LCAT activity was similar for both groups. Following simultaneous injection of 3H LDL and 14C high density lipoprotein (HDL) cholesteryl ester (CE), removal of the latter was not altered by oral nicotine while plasma clearance of 3H LDL was dramatically delayed in Nicotine monkeys. Transfer of 14C HDL CE to very low density lipoprotein (VLDL)-LDL particles was greatly accelerated in the Nicotine group vs Controls while the reciprocal movement of 3H LDL CE to HDL was only higher in experimental animals at two time points following injection of the isotopes. Results from this study provide evidence that one major detrimental effect of long-term oral nicotine use is an increase in the circulating pool of atherogenic LDL which is due to: 1) accelerated transfer of lipid from HDL; and 2) impaired clearance of LDL from the plasma compartment. Diminished removal of LDL is of particular importance because an extended residence time of these particles in circulation would increase the likelihood of their deposition in the arterial wall.  相似文献   

20.
1. Esterification of radiolabelled cholesterol in the plasma of rat, mouse, pig, ox and, to a lesser extent, guinea pig was partially inhibited by hypoxanthine, xanthine and guanine; esterification in human plasma and in plasma from 12 other vertebrate species was unaffected by purines. 2. Esterification of endogenous cholesterol and the formation of lysolecithin in rat plasma were decreased in the presence of purines indicating that it was the lecithin:cholesterol acyltransferase (LCAT) reaction that was inhibited rather than the isotopic equilibration of labelled cholesterol with the endogenous substrate lipoproteins. 3. Maximum inhibition of the LCAT reaction in rat plasma occurred at 1.4 mM hypoxanthine or xanthine; inhibition was not dependent upon the concentration of LCAT or plasma lipoproteins but increased with the amount of lipoprotein depleted rat plasma (LDRP) present in the incubation mixture. 4. Partial inhibition of the LCAT reaction in rat or mouse plasma by purines had no significant effect on the fatty acyl composition of the cholesteryl esters (CE) formed by LCAT. 5. In the presence of heated rat plasma, LDRP or, to a lesser extent, rat high density lipoproteins (HDL) prepared from heated plasma, the LCAT reaction in human plasma was inhibited by hypoxanthine. 6. Rat HDL and LDRP prepared from plasma pre-incubated at 37 degrees C for 4 hr before heating increased and decreased, respectively, the inhibitory effect of hypoxanthine on human plasma LCAT compared with HDL and LDRP prepared from unincubated rat plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号