首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ribosomal proteins L18, L25 and L5 on the conformation of 5S RNA have been studied by circular dichroism and temperature dependent ultraviolet absorbance. The circular dichroism spectrum of native 5S RNA is characterized in the near ultraviolet by a large positive band at 267 nm and a small negative band at 298 nm. The greatest perturbation in the spectrum was produced by protein L18 which induced a 20% increase in the 267 nm band and no change in the 298 nm band. By contrast, protein L25 caused a small decrease in both bands. No effect was observed with protein L5. Simultaneous binding of proteins L18 and L25 resulted in CD changes equivalent to the sum of their independent effects. The UV absorbance thermal denaturation profile of the 5S RNA L18 complex lacked the pre-melting behavior characteristic of 5S RNA. Protein L25 had no effect on the 5S RNA melting profile. We concluded that protein L18 increases the secondary, and possible the tertiary structure of 5S RNA, and exerts a minor stabilizing effect on its conformation while protein L25 causes a small decrease in 5S RNA secondary structure. The implications of these findings for ribosome assembly and function are discussed.  相似文献   

2.
3.
5 S RNA was isolated from Saccharomyces cerevisiae grown in the presence of 32P-phosphate and digested with nuclease S1, a single-strand specific nuclease. Two different procedures were employed to determine the sites of attack on the RNA. First, 5 S RNA was isolated from nuclease S1 digests, digested to completion with ribonuclease T1, and then 'fingerprinted' by two-dimensional electrophoresis. Quantitation of each of the characteristic RNAase T1-derived oligonucleotides was employed to determine the relative susceptibility of various regions of the molecule to nuclease S1. A second procedure to define nuclease S1-susceptible sites in the molecule employed polyacrylamide gel electrophoretic fractionation of nuclease S1 digests followed by identification of the nucleotide sequences of the released RNA fragments. Both procedures showed that the region of the molecule between residues 9 and 60 was most susceptible to nuclease S1, with preferential cleavage occurring between residues 12-25 and 50-60. These results are discussed in relation to a proposed model for the secondary structure of yeast 5 S RNA.  相似文献   

4.
The complex of 23 S ribosomal RNA with the nine core proteins L2, L3, L4, L13, L17, L20, L21, L22 and L23 obtained either by the disassembly procedure or by reconstitution has been studied by electron microscopy. This complex is found to be very similar to the intact 50 S subunit both in size and in shape.  相似文献   

5.
RNA binding strategies of ribosomal proteins.   总被引:5,自引:0,他引:5       下载免费PDF全文
Structures of a number of ribosomal proteins have now been determined by crystallography and NMR, though the complete structure of a ribosomal protein-rRNA complex has yet to be solved. However, some ribosomal protein structures show strong similarity to well-known families of DNA or RNA binding proteins for which structures in complex with cognate nucleic acids are available. Comparison of the known nucleic acid binding mechanisms of these non-ribosomal proteins with the most highly conserved surfaces of similar ribosomal proteins suggests ways in which the ribosomal proteins may be binding RNA. Three binding motifs, found in four ribosomal proteins so far, are considered here: homeodomain-like alpha-helical proteins (L11), OB fold proteins (S1 and S17) and RNP consensus proteins (S6). These comparisons suggest that ribosomal proteins combine a small number of fundamental strategies to develop highly specific RNA recognition sites.  相似文献   

6.
The structure of the RNA binding site of ribosomal proteins S8 and S15.   总被引:12,自引:0,他引:12  
Proteins S8 and S15 from the 30 S ribosomal subunit of Escherichia coli were bound to 16 S RNA and digested with ribonuclease A. A ribonucleoprotein complex was isolated which contained the two proteins and three noncontiguous RNA subfragments totaling 93 nucleotides, that could be unambiguously located in the 16 S RNA sequence. We present a secondary structural model for the RNA moiety of the binding site complex, in which the two smaller fragments are extensively base-paired, respectively, to the two halves of the large fragment, to form two disconnected duplexes. Each of the two duplexes is interrupted by a small internal loop. This model is supported by (i) minimum energy considerations, (ii) sites of cleavage by ribonuclease A, and (iii) modification by the single strand-specific reagent kethoxal. The effect of protein binding on the topography of the complex is reflected in the kethoxal reactivity of the RNA moiety. In the absence of the proteins, 5 guanines are modified; 4 of these, at positions 663, 732, 733, and 741, are strongly protected from kethoxal when protein S15 is bound.  相似文献   

7.
The binding of ribosomal protein S4 to the 16 S RNA does not result in a large shape or conformational change in the 16 S RNA under the conditions of reconstitution. The sedimentation coefficient, frictional coefficient ratio, and effective hydrodynamic radius of the 16 S RNA.protein S4 complex are very similar to those obtained for the 16 S RNA free in solution. Only subtle conformational differences were obtained in the comparison of the complex and free 16 S RNA by circular dichroism. Thus, extensive organization of the 16 S RNA by ribosomal protein S4 is not a step in the process of self-assembly of the 30 S subunit.  相似文献   

8.
Proteins of the large ribosomal subunit of rat liver (TP 60) were immobilized by diffusion transfer onto nitrocellulose after two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Incubation of the TP 60 blots with 32P-labeled 5 S RNA under defined ionic conditions (300 mM KCl, 20 mM MgCl2) resulted in specific binding to a limited set of ribosomal proteins consisting of proteins L3, L4, L6, L13/15 and--to a lesser extent--L7 and L19. Under identical conditions, blots with proteins of the small ribosomal subunit (TP 40) did not bind 5 S RNA.  相似文献   

9.
10.
The structure of ribosomal 5 S RNA has been examined using several physical biochemical techniques. Hydrodynamic measurements yield a s020,omega and [eta] of 5.5 x 10(-13) x and 6.9 ml/g, respectively. Other parameters calculated from these values indicate the shape of 5 S RNA is consistent with that of a prolate ellipsoid 160 A in length and 32 A wide. Sedimentation equilibrium results show that 5 S RNA exists as a monomer in the reconstitution buffer with an apparent molecular weight of 44,000. Ultraviolet absorption difference spectra show that approximately 75% of the bases in 5 S RNA are involved in base pairing, and of these base pairs 70% are G-C and 30% are A-U. These results on the overall shape and secondary structure of 5 S RNA have been incorporated with the results of other investigators as to the possible location of single-stranded and double-stranded helical regions, and a molecular model for 5 S RNA is proposed. The molecular model consists of three double helices in the shape of a prolate ellipsoid, with two of the double helical regions at one end of the molecule. The structure is consistent with the available data on the structure and function of 5 S RNA and bears similarity to the molecular model proposed by Osterberg et al. ((1976) Eur. J. Biochem. 68, 481-487) based on small angle x-ray scattering results and the secondary structure proposed by Madison ((1968) Annu. Rev. Biochem. 37, 131-148).  相似文献   

11.
The digestion of E. coli 16S RNA with a single-strand-specific nuclease produced two fractions separable by gel filtration. One fraction was small oligonucleotides, the other, comprising 67.5% of the total RNA, was highly structured double helical fragments of mol. wt. 7,600. There are thus about 44 helical loops of average size corresponding to 12 base pairs in each 16S RNA. 10% of the RNA could be digested from native 30S subunits. Nuclease attack was primarily in the intraloop single-stranded region but two major sites of attack were located in the interloop single-stranded regions. Nuclease digestion of unfolded subunits produced three classes of fragments, two of which, comprising 80% of the total RNA, were identical to fragments from 16S RNA. The third, consisting of 20% RNA, together with an equal weight of peotein, was a resistant core (sedimentation coefficient 7S).  相似文献   

12.
We have investigated the structure of oocyte and somatic 5S ribosomal RNA and of 5S RNA encoding genes in Xenopus tropicalis. The sequences of the two 5S RNA families differ in four positions, but only one of these substitutions, a C to U transition in position 79 within the internal control region of the corresponding 5S RNA encoding genes, is a distinguishing characteristic of all Xenopus somatic and oocyte 5S RNAs characterized to date, including those from Xenopus laevis and Xenopus borealis. 5S RNA genes in Xenopus tropicalis are organized in clusters of multiple repeats of a 264 base pair unit; the structural and functional organization of the Xenopus tropicalis oocyte 5S gene is similar to the somatic but distinct from the oocyte 5S DNA in Xenopus laevis and Xenopus borealis. A comparative sequence analysis reveals the presence of a strictly conserved pentamer motif AAAGT in the 5'-flanking region of Xenopus 5S genes which we demonstrate in a separate communication to serve as a binding signal for an upstream stimulatory factor.  相似文献   

13.
14.
Following dialysis against distilled water, the 16 S ribosomal RNA of Escherichia coli is unable to interact with 30 S subunit protein S4 at 0 °C. The dialysed RNA recovered this capacity, however, when heated at 40 °C in the presence of 0.02m-MgCl2 prior to addition of the protein. Furthermore, its sensitivity to ribo-nuclease markedly declined and its sedimentation rate increased as a consequence of this treatment. Although no concomitant changes in secondary structure were detected by absorbance and fluorescence techniques, the rearrangement of a small number of base-pairs was not excluded. Kinetic measurements revealed that binding site reactivation satisfies the first-order rate law and that the process is highly temperature-dependent, exhibiting an Arrhenius activation energy of 40,800 cal/mol. Together, these data suggest that dialysed RNA undergoes a unimolecular conformational transition upon pre-incubation in Mg2+-containing buffers and that this transition leads to renaturation of the binding site for protein S4.Similar results were obtained for several other proteins of the 30 S subunit. In particular, S7, S16/S17 and S20 all failed to interact efficiently with dialysed 16 S RNA at 0 °C. These proteins bound normally to the RNA, however, after it had been incubated at 40 °C in the presence of Mg2+ ions. By contrast, prior dialysis of the 16 S RNA did not affect its ability to associate with S8 and S15 at 0 °C. These two proteins interacted equally well with dialysed and pre-incubated 16 S RNA, indicating that their binding sites are not susceptible to the reversible alterations in conformation which influence the attachment of the other RNA-binding proteins to the nucleic acid molecule. The effects of dialysis and pre-incubation on the interaction of 16 S RNA with an unfractionated mixture of 30 S subunit proteins were also investigated. The dialysed RNA bound only S6, S8, S15 and S18 at 0 °C whereas, after heating at. high Mg2+ concentrations, the RNA associated with S4, S7, S9, S13, S16/S17, S19 and S20 as well. These results leave little doubt that the protein-binding capacities of the 16 S RNA are intimately related to its three-dimensional configuration, although individual binding sites appear to differ significantly in their stability to small changes in structure.  相似文献   

15.
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.  相似文献   

16.
The structure of the ribosomal 5 S RNA was examined using Fe(II)-EDTA, a solvent-based reagent that cleaves the phosphodiester backbone of both double- and single-stranded RNA but is restricted by the three-dimensional structure. In the yeast 5 S RNA, cleavages were significantly restricted in six specific regions of the molecule; restrictions in only two of these regions were clearly dependent on a high salt/magnesium ion environment. A comparison of four RNAs of diverse origin revealed strong similarities in the cleavage profiles supporting a highly conserved higher order structure. Taken together with previous studies these data provide a more detailed modeling of the three-dimensional structure.  相似文献   

17.
18.
19.
The possible location of RNA in the ribosomal attachment site for the eukaryotic elongation factor EF-2 was analysed. Stable EF-2 · ribosome complexes formed in the presence of the non-hydrolysable GTP analogue GuoPP[CH2]P were cross-linked with the short (4 Å between the reactive groups) bifunctional reagent, diepoxybutane. Non-cross-linked EF-2 was removed and the covalent factor-ribosome complex isolated. No interaction between EF-2 and 18 S or 28 S rRNA could be demonstrated. However, density gradient centrifugation of the cross-linked ribosomal complexes showed an increased density (1.25 g/cm3) of the factor, as expected from a covalent complex between EF-2 and a low-molecular-weight RNA species. Treatment of the covalent ribosome-factor complexes with EDTA released approx 50% of the cross-linked EF-2 from the ribosome together with the 5 S rRNA · protein L5 complex. Furthermore, the complex co-migrated with the 5S rRNA · L5 particle in sucrose gradients. Polyacrylamide gel electrophoresis showed that EF-2 was directly linked to 5 S rRNA in the 5 S rRNA · L5 complex, as well as in the complexes isolated by density gradient centrifugation. No traces of 5.8 S rRNA or tRNA could be demonstrated. The data indicate that the ribosomal binding domain for EF-2 contains the 5 S rRNA · protein L5 particle and that EF-2 is located in close proximity to 5 S rRNA within the EF-2 · GuoPP[CH2]P · ribosome complex.  相似文献   

20.
The thermal melting of B. stearothermophilus 5S ribosomal RNA was studied, by means of derivative optical absorption and CD spectra, and high performance liquid chromatography, in Tris buffers with K+ and Mg2+ at pH 7.6. Biphasic changes in optical absorption and CD ellipticity were observed, which mean the melting of two helices. Change in molecular size was also examined in the melting process. The melting temperatures depended on ionic strength and concentration of Mg2+. Enhanced stability of the helix was indicated, as compared with the corresponding one in B. subtilis 5S ribosomal RNA. In the presence of a large amount of Mg2+, the third melting process was observed at low temperatures, which was suggested due to change in the tertiary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号