首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tumor necrosis factor alpha (TNF-alpha) receptor-associated factors (TRAFs) play important roles in TNF-alpha signaling by interacting with downstream signaling molecules, e.g., mitogen-activated protein kinases (MAPKs). However, TNF-alpha also signals through reactive oxygen species (ROS)-dependent pathways. The interrelationship between these pathways is unclear; however, a recent study suggested that TRAF4 could bind to the NADPH oxidase subunit p47phox. Here, we investigated the potential interaction between p47phox phosphorylation and TRAF4 binding and their relative roles in acute TNF-alpha signaling. Exposure of human microvascular endothelial cells (HMEC-1) to TNF-alpha (100 U/ml; 1 to 60 min) induced rapid (within 5 min) p47phox phosphorylation. This was paralleled by a 2.7- +/- 0.5-fold increase in p47phox-TRAF4 association, membrane translocation of p47phox-TRAF4, a 2.3- +/- 0.4-fold increase in p47phox-p22phox complex formation, and a 3.2- +/- 0.2-fold increase in NADPH-dependent O2- production (all P < 0.05). TRAF4-p47phox binding was accompanied by a progressive increase in extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38(MAPK) activation, which was inhibited by an O2- scavenger, tiron. TRAF4 predominantly bound the phosphorylated form of p47phox, in a protein kinase C-dependent process. Knockdown of TRAF4 expression using siRNA had no effect on p47phox phosphorylation or binding to p22phox but inhibited TNF-alpha-induced ERK1/2 activation. In coronary microvascular EC from p47phox-/- mice, TNF-alpha-induced NADPH oxidase activation, ERK1/2 activation, and cell surface intercellular adhesion molecule 1 (ICAM-1) expression were all inhibited. Thus, both p47phox phosphorylation and TRAF4 are required for acute TNF-alpha signaling. The increased binding between p47phox and TRAF4 that occurs after p47phox phosphorylation could serve to spatially confine ROS generation from NADPH oxidase and subsequent MAPK activation and cell surface ICAM-1 expression in EC.  相似文献   

2.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   

3.
Molecular basis of phosphorylation-induced activation of the NADPH oxidase   总被引:14,自引:0,他引:14  
Groemping Y  Lapouge K  Smerdon SJ  Rittinger K 《Cell》2003,113(3):343-355
The multi-subunit NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of reactive oxygen species. Activation of the NADPH oxidase requires the targeting of a cytoplasmic p40-p47-p67(phox) complex to the membrane bound heterodimeric p22-gp91(phox) flavocytochrome. This interaction is prevented in the resting state due to an auto-inhibited conformation of p47(phox). The X-ray structure of the auto-inhibited form of p47(phox) reveals that tandem SH3 domains function together to maintain the cytoplasmic complex in an inactive form. Further structural and biochemical data show that phosphorylation of p47(phox) activates a molecular switch that relieves the inhibitory intramolecular interaction. This permits p47(phox) to interact with the cytoplasmic tail of p22(phox) and initiate formation of the active, membrane bound enzyme complex.  相似文献   

4.
The phagocyte-type NADPH oxidase expressed in endothelial cells differs from the neutrophil enzyme in that it exhibits low level activity even in the absence of agonist stimulation, and it generates intracellular reactive oxygen species. The mechanisms underlying these differences are unknown. We studied the subcellular location of (a) oxidase subunits and (b) functionally active enzyme in unstimulated endothelial cells. Confocal microscopy revealed co-localization of the major oxidase subunits, i.e. gp91(phox), p22(phox), p47(phox), and p67(phox), in a mainly perinuclear distribution. Plasma membrane biotinylation experiments confirmed the predominantly (>90%) intracellular distribution of gp91(phox) and p22(phox). After subcellular protein fractionation, approximately 50% of the gp91(phox) (91-kDa band), p22(phox), p67(phox), and p40(phox) pools and approximately 30% of the p47(phox) were present in the 1475 x g ("nucleus-rich") fraction. Likewise, approximately 50% of total NADPH-dependent O(2)() production (assessed by lucigenin (5 microm) chemiluminescence) was found in the 1475 x g fraction. Co-immunoprecipitation studies and measurement of NADPH-dependent reactive oxygen species production (cytochrome c reduction assay) demonstrated that p22(phox), gp91(phox), p47(phox), p67(phox), and p40(phox) existed as a functional complex in the cytoskeletal fraction. These results indicate that, in contrast to the neutrophil enzyme, a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as a preassembled intracellular complex associated with the cytoskeleton.  相似文献   

5.
Human neutrophils participate in the host innate immune response, partly mediated by the multicomponent superoxide-generating enzyme NADPH oxidase. A correlation between phosphorylation of cytosolic NADPH oxidase components and enzyme activation has been identified but is not well understood. We previously showed that p22(phox), the small subunit of the membrane-bound oxidase component flavocytochrome b(558), is an in vitro substrate for both a phosphatidic acid-activated kinase and conventional protein kinase C isoforms (Regier, D. S., Waite, K. A., Wallin, R., and McPhail, L. C. (1999) J. Biol. Chem. 274, 36601-36608). Here we show that several neutrophil agonists (phorbol myristate acetate, opsonized zymosan, and N-formyl-methionyl-leucyl-phenylalanine) induce p22(phox) phosphorylation in intact neutrophils. To determine if phospholipase D (PLD) is needed for p22(phox) phosphorylation, cells were pretreated with ethanol, which reduces phosphatidic acid production by PLD in stimulated cells. Phorbol myristate acetate-induced phosphorylation of p22(phox) and NADPH oxidase activity were not reduced by ethanol. In contrast, ethanol reduced both activities when cells were stimulated by N-formyl-methionyl-leucyl-phenylalanine or opsonized zymosan. Varying the time of stimulation with opsonized zymosan showed that the phosphorylation of p22(phox) coincides with NADPH oxidase activation. GF109203X, an inhibitor of protein kinase C and the phosphatidic acid-activated protein kinase, decreased both p22(phox) phosphorylation and NADPH oxidase activity in parallel in opsonized zymosan-stimulated cells. Stimulus-induced phosphorylation of p22(phox) was on Thr residue(s), in agreement with in vitro results. Overall, these data show that NADPH oxidase activity and p22(phox) phosphorylation are correlated and suggest two mechanisms (PLD-dependent and -independent) by which p22(phox) phosphorylation occurs.  相似文献   

6.
Production of superoxide anions by the multicomponent enzyme of human neutrophil NADPH oxidase is accompanied by extensive phosphorylation of p47(phox), one of its cytosolic components. p47(phox) is an excellent substrate for protein kinase C (PKC), but the respective contribution of each PKC isoform to this process is not clearly defined. In this study, we found that PKC isoforms known to be present in human neutrophils (PKC alpha, beta, delta, and zeta) phosphorylate p47(phox) in a time- and concentration-dependent manner, with apparent K(m) values of 10.33, 3.37, 2.37, and 2.13 microM for PKC alpha, beta II, delta, and zeta, respectively. Phosphopeptide mapping of p47(phox) showed that, as opposed to PKC zeta, PKC alpha, beta II, and delta are able to phosphorylate all the major PKC sites. The use of p47(phox) mutants identified serines 303, 304, 315, 320, 328, 359, 370, and 379 as targets of PKC alpha, beta II, and delta. Comparison of the intensity of phosphopeptides suggests that Ser 328 is the most phosphorylated serine. The ability of each PKC isoform to induce p47(phox) to associate with p22(phox) was tested by using an overlay technique; the results showed that all the PKC isoforms that were studied induce p47(phox) binding to the cytosolic fragment of p22(phox). In addition, PKC alpha, beta II, delta, and zeta were able to induce production of superoxide anions in a cell-free system using recombinant cytosolic proteins. Surprisingly, PKC zeta, which phosphorylates a subset of selective p47(phox) sites, induced stronger activation of the NADPH oxidase. Taken together, these results suggest that PKC alpha, beta II, delta, and zeta expressed in human neutrophils can individually phosphorylate p47(phox) and induce both its translocation and NADPH oxidase activation. In addition, phosphorylation of some serines could have an inhibitory effect on oxidase activation.  相似文献   

7.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

8.
Reactive oxygen species (ROS) play a central role in the pathogenesis of many cardiovascular diseases, such as atherosclerosis and hypertension. Endothelial NADPH oxidase is the major source of intracellular ROS. The present study investigated the role of endothelial NADPH oxidase-derived ROS in angiopoietin-1 (Ang-1)-induced angiogenesis. Exposure of porcine coronary artery endothelial cells (PCAECs) to Ang-1 (250 ng/ml) for periods up to 30 min led to a transient and dose-dependent increase in intracellular ROS. Thirty minutes of pretreatment with the NADPH oxidase inhibitors diphenylene iodinium (DPI, 10 microM) and apocynin (200 microM) suppressed Ang-1-stimulated ROS. Pretreatment with either DPI or apocynin also significantly attenuated Ang-1-induced Akt and p44/42 MAPK phosphorylation. In addition, inhibition of NADPH oxidase significantly suppressed Ang-1-induced endothelial cell migration and sprouting from endothelial spheroids. Using mouse heart microvascular endothelial cells from wild-type (WT) mice and mice deficient in the p47(phox) component of NADPH oxidase (p47(phox-/-)), we found that although Ang-1 stimulated intracellular ROS, Akt and p42/44 MAPK phosphorylation, and cell migration in WT cells, the responses were strikingly suppressed in cells from the p47(phox-/-) mice. Furthermore, exposure of aortic rings from p47(phox-/-) mice to Ang-1 demonstrated fewer vessel sprouts than WT mice. Inhibition of the Tie-2 receptor inhibited Ang-1-induced endothelial migration and vessel sprouting. Together, our data strongly suggest that endothelial NADPH oxidase-derived ROS play a critical role in Ang-1-induced angiogenesis.  相似文献   

9.
10.
We sought to determine the mechanism by which angiotensin II (ANGII) stimulates NADPH oxidase‐mediated superoxide (O2.?) production in bovine pulmonary artery smooth muscle cells (BPASMCs). ANGII‐induced increase in phospholipase D (PLD) and NADPH oxidase activities were inhibited upon pretreatment of the cells with chemical and genetic inhibitors of PLD2, but not PLD1. Immunoblot study revealed that ANGII treatment of the cells markedly increases protein kinase C‐α (PKC‐α), ‐δ, ‐ε, and ‐ζ levels in the cell membrane. Pretreatment of the cells with chemical and genetic inhibitors of PKC‐ζ, but not PKC‐α, ‐δ, and ‐ε, attenuated ANGII‐induced increase in NADPH oxidase activity without a discernible change in PLD activity. Transfection of the cells with p47phox small interfering RNA inhibited ANGII‐induced increase in NADPH oxidase activity without a significant change in PLD activity. Pretreatment of the cells with the chemical and genetic inhibitors of PLD2 and PKC‐ζ inhibited ANGII‐induced p47phox phosphorylation and subsequently translocation from cytosol to the cell membrane, and also inhibited its association with p22phox (a component of membrane‐associated NADPH oxidase). Overall, PLD?PKCζ?p47phox signaling axis plays a crucial role in ANGII‐induced increase in NADPH oxidase‐mediated O2.? production in the cells.  相似文献   

11.
Enzymatically derived oligophenols from apocynin can be effective inhibitors of human vascular NADPH oxidase (Nox). An isolated trimer hydroxylated quinone (IIIHyQ) has been shown to inhibit endothelial NADPH oxidase with an IC(50) ~30 nM. In vitro studies demonstrated that IIIHyQ is capable of disrupting the interaction between p47(phox) and p22(phox), thereby blocking the activation of the Nox2 isoform. Herein, we report the role of key cysteine residues in p47(phox) as targets for the IIIHyQ. Incubation of p47(phox) with IIIHyQ results in a decrease of ~80% of the protein free cysteine residues; similar results were observed using 1,2- and 1,4-naphthoquinones, whereas apocynin was unreactive. Mutants of p47(phox), in which each Cys was individually replaced by Ala (at residues 111, 196, and 378) or Gly (at residue 98), were generated to evaluate their individual importance in IIIHyQ-mediated inhibition of p47(phox) interaction with p22(phox). Specific Michael addition on Cys196, within the N-SH3 domain, by the IIIHyQ is critical for disrupting the p47(phox)-p22(phox) interaction. When a C196A mutation was tested, the IIIHyQ was unable to disrupt the p47(phox)-p22(phox) interaction. However, the IIIHyQ was effective at disrupting this interaction with the other mutants, displaying IC(50) values (4.9, 21.0, and 2.3μM for the C111A, C378A, and C98G mutants, respectively) comparable to that of wild-type p47(phox).  相似文献   

12.
Generation of superoxide by professional phagocytes is an important mechanism of host defense against bacterial infection. Several protein kinase C (PKC) isoforms have been found to phosphorylate p47(phox), resulting in its membrane translocation and activation of the NADPH oxidase. However, the mechanism by which specific PKC isoforms regulate NADPH oxidase activation remains to be elucidated. In this study, we report that PKCdelta phosphorylation in its activation loop is rapidly induced by fMLF and is essential for its ability to catalyze p47(phox) phosphorylation. Using transfected COS-7 cells expressing gp91(phox), p22(phox), p67(phox), and p47(phox) (COS-phox cells), we found that a functionally active PKCdelta is required for p47(phox) phosphorylation and reconstitution of NADPH oxidase. PKCbetaII cannot replace PKCdelta for this function. Characterization of PKCdelta/PKCbetaII chimeras has led to the identification of the catalytic domain of PKCdelta as a target of regulation by fMLF, which induces a biphasic (30 and 180 s) phosphorylation of Thr(505) in the activation loop of mouse PKCdelta. Mutation of Thr(505) to alanine abolishes the ability of PKCdelta to catalyze p47(phox) phosphorylation in vitro and to reconstitute NADPH oxidase in the transfected COS-phox cells. A correlation between fMLF-induced activation loop phosphorylation and superoxide production is also established in the differentiated PLB-985 human myelomonoblastic cells. We conclude that agonist-induced PKCdelta phosphorylation is a novel mechanism for NADPH oxidase activation. The ability to induce PKCdelta phosphorylation may distinguish a full agonist from a partial agonist for superoxide production.  相似文献   

13.
Angiotensin II stimulates NADPH oxidase activity in vascular cells. However, it is not fully understood whether angiotensin II, which plays an important role in heart failure, stimulates NADPH oxidase activation and expression in cardiac myocytes. Previous studies have shown that angiotensin II induces myocyte apoptosis, but whether the change is mediated via NADPH oxidase remains to be elucidated. In this study we proposed to determine whether angiotensin II stimulated NADPH oxidase activation and NADPH oxidase subunit p47-phox expression in H9C2 cardiac muscle cells. If so, we would determine whether the NADPH oxidase inhibitor apocynin prevented angiotensin II-induced apoptosis. The results showed that angiotensin II increased NADPH oxidase activity, p47-phox protein and mRNA expression, intracellular reactive oxygen species, and apoptosis in H9C2 cells. Angiotensin II elevated p38 mitogen-activated protein kinase (MAPK) activity, decreased Bcl-2 protein, and increased Bax protein and caspase-3 activity. Apocynin treatment inhibited angiotensin II-induced NADPH oxidase activation and increases in p47-phox expression, intracellular reactive oxygen species, and apoptosis. The effect of apocynin on apoptosis was associated with reduced p38 MAPK activity, increased Bcl-2 protein, and decreased Bax protein and caspase-3 activity. These results suggest that angiotensin II-induced apoptosis is mediated via NADPH oxidase activation probably through p38 MAPK activation, a decrease in Bcl-2 protein, and caspase activation.  相似文献   

14.
The production of reactive oxygen species (ROS) is central to the etiology of endothelial dysfunction in sepsis. Endothelial cells respond to infection by activating NADPH oxidases that are sources of intracellular ROS and potential targets for therapeutic administration of antioxidants. Ascorbate is an antioxidant that accumulates in these cells and improves capillary blood flow, vascular reactivity, arterial blood pressure, and survival in experimental sepsis. Therefore, the present study tested the hypothesis that ascorbate regulates NADPH oxidases in microvascular endothelial cells exposed to septic insult. We observed that incubation with Escherichia coli lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) increased NADPH oxidase activity and expression of the enzyme subunit p47phox in mouse microvascular endothelial cells of skeletal muscle origin. Pretreatment of the cells with ascorbate prevented these increases. Polyethylene glycol-conjugated catalase and selective inhibitors of Jak2 also abrogated induction of p47phox. Exogenous hydrogen peroxide induced p47phox expression that was prevented by pretreatment of the cells with ascorbate. LPS+IFNgamma or hydrogen peroxide activated the Jak2/Stat1/IRF1 pathway and this effect was also inhibited by ascorbate. In conclusion, ascorbate blocks the stimulation by septic insult of redox-sensitive Jak2/Stat1/IRF1 signaling, p47phox expression, and NADPH oxidase activity in microvascular endothelial cells. Because endothelial NADPH oxidases produce ROS that can cause endothelial dysfunction, their inhibition by ascorbate may represent a new strategy for sepsis therapy.  相似文献   

15.
The renin-angiotensin system (RAS) and reactive oxygen species (ROS) have been implicated in the development of insulin resistance and its related complications. There is also evidence that angiotensin II (Ang II)-induced generation of ROS contributes to the development of insulin resistance in skeletal muscle, although the precise mechanisms remain unknown. In the present study, we found that Ang II markedly enhanced NADPH oxidase activity and consequent ROS generation in L6 myotubes. These effects were blocked by the angiotensin II type 1 receptor blocker losartan, and by the NADPH oxidase inhibitor apocynin. Ang II also promoted the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox to the plasma membrane within 15 min. Furthermore, Ang II abolished insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), activation of protein kinase B (Akt), and glucose transporter-4 (GLUT4) translocation to the plasma membrane, which was reversed by pretreating myotubes with losartan or apocynin. Finally, small interfering RNA (siRNA)-specific gene silencing targeted specifically against p47phox (p47siRNA), in both L6 and primary myotubes, reduced the cognate protein expression, decreased NADPH oxidase activity, restored Ang II-impaired IRS1 and Akt activation as well as GLUT4 translocation by insulin. These results suggest a pivotal role for NADPH oxidase activation and ROS generation in Ang II-induced inhibition of insulin signaling in skeletal muscle cells.  相似文献   

16.
The NADPH oxidase of phagocytic cells is regulated by the cytosolic factors p47(phox), p67(phox), and p40(phox) as well as by the Rac1-Rho-GDI heterodimer. The regulation is a consequence of protein-protein interactions involving a variety of protein domains that are well characterized in signal transduction. We have studied the behavior of the NADPH oxidase cytosolic factors in solution using small angle neutron scattering and gel filtration. p47(phox), two truncated forms of p47(phox), namely, p47(phox) without its C-terminal end (residues 1-358) and p47(phox) without its N-terminal end (residues 147-390), and p40(phox) were found to be monomeric in solution. The dimeric form of p67(phox) previously observed by gel filtration experiments was confirmed. Our small angle neutron scattering experiments show that p40(phox) binds to the full-length p47(phox) in solution in the absence of phosphorylation. We demonstrated that the C-terminal end of p47(phox) is essential in this interaction. From the comparison of the presence or absence of interaction with various truncated forms of the proteins, we confirmed that the SH3 domain of p40(phox) interacts with the C-terminal proline rich region of p47(phox). The radii of gyration observed for p47(phox) and the truncated forms of p47(phox) (without the C-terminal end or without the N-terminal end) show that all these molecules are elongated and that the N-terminal end of p47(phox) is globular. These results suggest that the role of amphiphiles such as SDS or arachidonic acid or of p47(phox) phosphorylation in the elicitation of NADPH oxidase activation could be to disrupt the p40(phox)-p47(phox) complex rather than to break an intramolecular interaction in p47(phox).  相似文献   

17.
The superoxide-producing phagocyte NADPH oxidase can be activated by arachidonic acid (AA) or by phosphorylation of p47(phox) under cell-free conditions. The molecular mechanism underlying the activation, however, has remained largely unknown. Here we demonstrate that AA, at high concentrations (50-100 micrometer), induces direct interaction between the oxidase factors p47(phox) and p22(phox) in parallel with superoxide production. The interaction, being required for the oxidase activation, is mediated via the Src homology 3 (SH3) domains of p47(phox) (p47-(SH3)(2)), which are intramolecularly masked in a resting state. We also show that AA disrupts complexation of p47-(SH3)(2) with its intramolecular target fragment (amino acids 286-340) without affecting association of p47-(SH3)(2) with p22(phox), indicating that the disruption plays a crucial role in the induced interaction with p22(phox). Phosphorylation of p47(phox) by protein kinase C partially replaces the effects of AA; treatment of the SH3 target fragment with PKC in vitro results in a completely impaired interaction with p47-(SH3)(2), and the same treatment of the full-length p47(phox) leads to both interaction with p22(phox) and oxidase activation without AA, but to a lesser extent. Furthermore, phosphorylated p47(phox) effectively binds to p22(phox) and activates the oxidase in the presence of AA at low concentrations (1-5 micrometer), where an unphosphorylated protein only slightly supports superoxide production. Thus AA, at high concentrations, fully induces the interaction of p47(phox) with p22(phox) by itself, whereas, at low concentrations, AA synergizes with phosphorylation of p47(phox) to facilitate the interaction, thereby activating the NADPH oxidase.  相似文献   

18.
19.
We recently demonstrated that hyperoxia (HO) activates lung endothelial cell NADPH oxidase and generates reactive oxygen species (ROS)/superoxide via Src-dependent tyrosine phosphorylation of p47(phox) and cortactin. Here, we demonstrate that the non-muscle ~214-kDa myosin light chain (MLC) kinase (nmMLCK) modulates the interaction between cortactin and p47(phox) that plays a role in the assembly and activation of endothelial NADPH oxidase. Overexpression of FLAG-tagged wild type MLCK in human pulmonary artery endothelial cells enhanced interaction and co-localization between cortactin and p47(phox) at the cell periphery and ROS production, whereas abrogation of MLCK using specific siRNA significantly inhibited the above. Furthermore, HO stimulated phosphorylation of MLC and recruitment of phosphorylated and non-phosphorylated cortactin, MLC, Src, and p47(phox) to caveolin-enriched microdomains (CEM), whereas silencing nmMLCK with siRNA blocked recruitment of these components to CEM and ROS generation. Exposure of nmMLCK(-/-) null mice to HO (72 h) reduced ROS production, lung inflammation, and pulmonary leak compared with control mice. These results suggest a novel role for nmMLCK in hyperoxia-induced recruitment of cytoskeletal proteins and NADPH oxidase components to CEM, ROS production, and lung injury.  相似文献   

20.
Activation of the phagocyte NADPH oxidase requires the regulatory proteins p47(phox) and p67(phox), each harboring two SH3 domains. p67(phox) interacts with p47(phox) via simultaneous binding of the p67(phox) C-terminal SH3 domain to both the proline-rich region (PRR) of amino acid residues 360-369 and its C-terminally flanking region of p47(phox); the role of the interaction in oxidase regulation has not been fully understood. Here we show that the p47(phox)-p67(phox) interaction is disrupted not only by deletion of the PRR but also by substitution for basic residues in the extra-PRR (K383E/K385E). The substitution impaired oxidase activation partially in vitro and much more profoundly in vivo, indicating the significance of the p47(phox) extra-PRR. Replacement of Ser-379 in the extra-PRR, a residue known to undergo phosphorylation in stimulated cells, by aspartate attenuates the interaction and thus results in a defective superoxide production, suggesting that phosphorylation of Ser-379 is involved in oxidase regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号