首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and precise micro-method for measurement of daily fecal excretion of neutral and acidic sterols has been developed which utilizes sitostanol (24-ethyl-5 alpha-cholestane-3 beta-ol) as fecal flow and recovery marker. Extractions of sterols were performed from 50 microliters of fecal homogenate (feces-water 1:1), and analyses of neutral and acidic sterols were carried out by gas-liquid chromatography. The method is sensitive, precise, and easy to perform; the intra-assay variability yielded coefficients of variations of 1.9% and 3.5% (n = 6) for neutral and acidic sterols, respectively. The results from this method were compared with those obtained with the standard fecal flow marker chromic oxide. The correlation coefficients between the two markers were compared in 16 subjects and were 0.938 and 0.998 for excretion of neutral sterols and acidic sterols, respectively. Comparison of the fecal excretion of neutral and acidic sterols in 12 subjects determined from frozen samples and aliquots (approximately 1 g) sent by ordinary mail to the laboratory (transport time 1 to 5 days) gave identical results using sitostanol as fecal flow marker (818 +/- (SEM) 85 mg/day vs. 838 +/- 89 mg/day for neutral sterols and 417 +/- 59 mg/day vs. 414 +/- 60 mg/day for acidic sterols). The new micro-method is ideally suited for research laboratories in need of a simple, accurate, inexpensive, and high through-put method for measuring daily fecal excretion of neutral and acidic sterols, as well as total cholesterol synthesis, and can be performed on an outpatient basis.  相似文献   

2.
7-Ketocholesterol (a major cholesterol oxidation product) and phytosterols are important indicators of lipoprotein oxidation and lipoprotein metabolism respectively. We describe a simple, sensitive and reproducible method for the simultaneous measurement of these sterols in human lipoprotein samples by capillary column gas liquid chromatography. The method is suitable for clinical studies as small quantities of lipoprotein are required. Sterols are analysed after extraction from lipoprotein samples obtained by sequential flotation ultracentrifugation. The method involves briefly: extraction from lipoprotein samples using chloroform-methanol, saponification of sterol esters using cold potassium hydroxide, purification and derivatisation to trimethylsilyl ethers using BSTFA and 1% TMCS. Oxidation is prevented by drying under nitrogen and the use of powerful antioxidants. Separation is achieved using a DB-1 capillary column and a two-stage temperature ramp from 180–250°C and detection using FID. The identity of sterols can be 3onfirmed by GC-MS. Phytosterol and 7-ketocholesterol are present at low concentration in all the major lipoproteins. Using [3,4-13C]cholesterol and GC-MS we present evidence that cholesterol oxidation does not occur during the processing of lipoproteins using this technique.  相似文献   

3.
Fecal neutral steroids were fractionated by high performance liquid chromatography (HPLC) into three major fractions: 5 beta-H, 3-keto steroids; 5 beta-H, 3 beta-hydroxy steroids; and 5 alpha-H and delta 5-3 beta-hydroxy steroids. This separation was achieved in about 10 minutes, with greater than 97% recovery of standards in each fraction. Gas-liquid chromatographic quantitation of fecal steroids fractionated by either HPLC or thin-layer chromatography gave nearly identical results. A method using both C18 reverse phase and silica HPLC to purify radiolabeled sterols is also described.  相似文献   

4.
The effects of cholestyramine feeding on biliary ursodeoxycholic acid, fecal excretion of bile acids and neutral sterols on cholesterol 7α-hydroxylase and hepatic HMG-CoA reductase were examined in the guinea pig. In the bile there was a 57% decrease in the concentration of ursodeoxycholic acid while an increase was observed in the concentration of chenodeoxycholic acid. Cholestyramine feeding for ten days resulted in a decrease in plasma cholesterol levels and an increase in both hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities. The fecal excretion of both bile acids and neutral sterols was significantly increased.  相似文献   

5.
Modified fungal product 4-O-methylascochlorin (MAC) is an experimental agent affecting lipid and carbohydrate metabolism in mammals. The hypocholesterolemic properties of MAC were studied using rats fed on a standard laboratory diet. Because of the insolubility in water, reproducibility of the hypocholesterolemic activity had usually been poor for rats fed ad libitum. The difficulty was overcome by controlled reverse-phase feeding; MAC significantly lowered serum total cholesterol (s-TC) in rats only when given by gastric intubation soon after diet intake.

MAC increased fecal excretion of neutral and acidic sterols and also increased biliary flow accompanying increments in biliary cholesterol, bile acids and phospholipids. A much larger increase in neutral sterols was characteristic for MAC. However, intestinal absorption of cholesterol and cholic acid was unaffected by MAC. Three mechanisms therefore seemed to be working in hypocholesterolemic activity: (a) withdrawal of hepatic cholesterol into bile, (b) a larger fecal loss of sterols following increment of biliary sterols and (c) enhanced bile acid synthesis compensating the larger fecal loss. A negative sterol balance often leads to an increase in hepatic cholesterogenesis. However, cholesterogenesis, as judged from incorporation of the precursors, was unchanged by MAC.  相似文献   

6.
Liver X receptor (LXR) is a nuclear receptor that plays a crucial role in orchestrating the trafficking of sterols between tissues. Treatment of mice with a potent and specific LXR agonist, T0901317, is associated with increased biliary cholesterol secretion, decreased fractional cholesterol absorption, and increased fecal neutral sterol excretion. Here we show that expression of two target genes of LXRalpha, the ATP-binding cassette (ABC) transporters Abcg5 and Abcg8, is required for both the increase in sterol excretion and the decrease in fractional cholesterol absorption associated with LXR agonist treatment. Mice expressing no ABCG5 and ABCG8 (G5G8(-/-) mice) and their littermate controls were treated for 7 days with T0901317. In wild type animals, treatment with the LXR agonist resulted in a 3-fold increase in biliary cholesterol concentrations, a 25% reduction in fractional cholesterol absorption, and a 4-fold elevation in fecal neutral sterol excretion. In contrast, the LXR agonist did not significantly affect biliary cholesterol levels, fractional cholesterol absorption, or neutral fecal sterol excretion in the G5G8(-/-) mice. Thus Abcg5 and Abcg8 are required for LXR agonist-associated changes in dietary and biliary sterol trafficking. These results establish a central role for ABCG5 and ABCG8 in promoting cholesterol excretion in vivo.  相似文献   

7.
A study was conducted in hamsters to determine if group B soyasaponins improve plasma cholesterol status by increasing the excretion of fecal bile acids and neutral sterols, to identify group B soyasaponin metabolites, and to investigate the relationship between a fecal group B soyasaponin metabolite and plasma lipids. Twenty female golden Syrian hamsters, 11-12 weeks old and 85-125 g, were randomly assigned to a control diet or a similar diet containing group B soyasaponins (containing no isoflavones), 2.2 mmol/kg, for 4 weeks. Hamsters fed group B soyasaponins had significantly lower plasma total cholesterol (by 20%), non-high-density lipoprotein (HDL) cholesterol (by 33%), and triglycerides (by 18%) compared with those fed casein (P < 0.05). The ratio of total cholesterol to HDL cholesterol was significantly lower (by 13%) in hamsters fed group B soyasaponins than in those fed casein (P < 0.05). The excretion of fecal bile acids and neutral sterols was significantly greater (by 105% and 85%, respectively) in soyasaponin-fed hamsters compared with those fed casein (P < 0.05). Compared with casein, group B soyasaponins lowered plasma total cholesterol levels and non-HDL cholesterol levels by a mechanism involving greater excretion of fecal bile acids and neutral sterols. Hamsters fed group B soyasaponins statistically clustered into two fecal soyasaponin metabolite-excretion phenotypes: high excreters (n = 3) and low excreters (n = 7). When high and low producers of this soyasaponin metabolite were compared for plasma cholesterol status, the high producers showed a significantly lower total-cholesterol-to-HDL-cholesterol ratio compared with the low producers (1.38 +/- 0.7 vs. 1.59 +/- 0.13; P < 0.03). Greater production of group B soyasaponin metabolite in hamsters was associated with better plasma cholesterol status, suggesting that gut microbial variation in soyasaponin metabolism may influence the health effects of group B soyasaponins.  相似文献   

8.
In the course of carrying out sterol balance studies in 19 patients, we gathered the following evidence that, in some but not all patients, considerable amounts of neutral sterols are "lost" during their passage through the intestinal tract. (a) Since plant sterols are largely nonabsorbable in man, they should be totally recovered in the feces; yet in many patients significantly less plant sterol than expected was recovered, the loss amounting to as much as 56% of daily intake. (b) In two patients in whom cholesterol-(14)C and beta-sitosterol-(3)H were instilled into the terminal ileum, from which neither sterol is absorbed, the feces contained 25% less of each isotope than was instilled. (c) In four patients fed radioactive cholesterol daily until the isotopic steady state was closely approximated, 28-50% of the isotope could not be accounted for. On the other hand, in five patients fed radioactive bile acids until the isotopic steady state was approximated, input equalled output as predicted. Since the amount of -sitosterol absorbed in man is limited (5% or less), this sterol can be used as an internal standard for upward correction of the figure obtained for the amount of neutral steroids excreted. The use of beta-sitosterol for this purpose is based on three considerations: (a) it passes through the intestine in the same physicochemical state as cholesterol; (b) it accompanies cholesterol at every step of its isolation and chromatographic measurement; and (c) it is lost to the same extent as cholesterol. Excretion data for fecal neutral steroids can therefore be corrected for irregular fecal flow as well as for the "unexpected loss" referred to. This loss seems to be due not to errors in stool collection or to technical errors, but to intestinal bacterial degradation of neutral 3beta-OH,Delta(5)-sterols to products not recognized as steroids in the analytical methods used.  相似文献   

9.
A simple method for the simultaneous gas-liquid chromatographic quantitation of fatty acids, sterols and bile acids from human fecal samples is described. The various compounds are directly converted into the n-butyl ester-trimethylsilyl ether derivatives, without prior isolation from the stool. Under these conditions, fecal bile acid derivatives are well resolved from each other and from those of fecal fatty acids and sterols without overlaps. The method was found to be reproducible and recoveries were similar to those obtained after exhaustive solvent extraction of fecal sterols, fatty acids and bile acids. Optimum derivatization conditions that allowed maximum recovery of fecal components with minimal destruction and application of the method for simultaneous bile acid, fatty acid and sterol analysis in human stool are described.  相似文献   

10.
A simple method for the gas-liquid chromatographic quantitation of human fecal bile acids and sterols is described where bile acids are subjected to n-butyl ester derivatization, without prior isolation from the stool, followed by trimethylsilylation of the sterols and bile acids. Under these conditions, bile acid derivatives are well resolved from each other and from the trimethylsilyl ether derivatives of fecal sterols and no overlap occurs. The method was shown to be highly reproducible and recoveries were similar to those obtained with other methods used for fecal bile acid analysis. Application of the method for bile acid and sterol analysis in human stool is described.  相似文献   

11.
Cholesterol, the main neutral fecal sterol (54-84 p. 100) in adult Large White sows fed a controlled semi-purified diet containing 0.08 p. 100 cholesterol (500 g twice a day; 3 510 kcal/day), was partially converted into coprostanol (10-44 p. 100). Exceptionally, epicoprostanol was present, indicating a second pathway of bacterial cholesterol degradation. In this paper, the term "fecal cholesterol" is restricted to the sum of cholesterol + coprostanol. The contribution of fecal cholesterol to the bulk of neutral fecal sterols eliminated daily, averaged 97 +/- 1 p. 100. For a given dietary cholesterol intake of 80 mg per day, eliminated fecal cholesterol was estimated to be 392 +/- 47 mg/day and mean fecal cholesterol concentration 1.88 +/- 0.12 mg/g of stools. The various sources of fecal cholesterol were unabsorbed ingested cholesterol, cholesterol excreted from the plasma, and externally-secreted intestinal cholesterol, synthesized by the digestive tract, discharged into the lumen and not absorbed. The respective contributions of these different sources were as follows: unabsorbed dietary cholesterol 34 +/- 2 mg/day, excreted cholesterol 234 +/- 28 mg/day and externally-secreted cholesterol 125 +/- 23 mg/day.  相似文献   

12.
M T Subbiah 《Steroids》1978,31(2):227-232
Previous studies from our laboratory suggested that the jejunum could be the major site of bile acid absorption in the pigeon. To confirm this observation directly, the effects of jejunal resection on the fecal excretion of bile acids and neutral sterols and on the level of plasma cholesterol were examined in the pigeon. This surgical procedure specifically increased (p less than 0.05) the excretion of bile acids, with no change in the excretion of neutral sterols. The total fecal steroid excretion in the pigeons with jejunal resection was significantly (P less than 0.01) higher than that in the control group. Jejunal resection also decreased the plasma cholesterol level in the pigeon. These results confirm our earlier suggestion that the jejunum is the major site of bile acid absorption in pigeons, unlike that in mammals, in which the ileum is the major site.  相似文献   

13.
Cholesterol metabolism during ketoconazole treatment in man   总被引:10,自引:0,他引:10  
Ketoconazole, an antifungal antibiotic, inhibits cholesterol synthesis by blocking demethylation of lanosterol. Effects of this inhibition were studied on serum cholesterol, lipoproteins and cholesterol precursors, biliary lipid composition, and fecal steroid elimination in five patients with prostate cancer treated with large doses of ketoconazole. The serum level of total cholesterol fell by 27%, that of LDL cholesterol by 41% and that of LDL apoB by 32% with ketoconazole alone; the fall in the total cholesterol level of a patient treated with ketoconazole-cholestyramine was 65%. Serum contents of free lanosterol and dihydrolanosterol increased up to 250 times, yet the total concentrations remained less than 2 mg/dl. Of the other cholesterol precursor sterols only those with delta 8-double bond increased several times, indicating that in addition to 14 alpha-demethylation, ketoconazole also interfered with metabolism of later intermediary sterols to some extent. Compared with serum sterols, lanosterols were enriched in biliary and fecal sterols up to 10-20 times. Fecal lanosterol output increased from 12 to 247 mg/day, and comprised over 20% fecal steroids of endogenous origin. Bile acid synthesis was significantly decreased, the proportion of chenodeoxycholic acid being markedly reduced in both biliary and fecal bile acids. Cholesterol absorption appeared to decrease yet fecal neutral sterol output and cholesterol synthesis were unchanged and the overall sterol synthesis was increased. It thus appears that ketoconazole inhibits cholesterol elimination as bile acids. However, by blocking 14 alpha-demethylation, it results in effective drainage of sterol nucleus as lanosterols into bile and feces, which, in turn, is associated with a marked reduction in low density lipoprotein (LDL) cholesterol level probably through activation of hepatic LDL apoB receptors.  相似文献   

14.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

15.
Selective sterol accumulation in ABCG5/ABCG8-deficient mice   总被引:8,自引:0,他引:8  
The ATP binding cassette (ABC) transporters ABCG5 and ABCG8 limit intestinal absorption and promote biliary secretion of neutral sterols. Mutations in either gene cause sitosterolemia, a rare recessive disease in which plasma and tissue levels of several neutral sterols are increased to varying degrees. To determine why patients with sitosterolemia preferentially accumulate noncholesterol sterols, levels of cholesterol and the major plant sterols were compared in plasma, liver, bile, and brain of wild-type and ABCG5/ABCG8-deficient (G5G8(-/-)) mice. The total sterol content of liver and plasma was similar in G5G8(-/-) mice and wild-type animals despite an approximately 30-fold increase in noncholesterol sterol levels in the knockout animals. The relative enrichment of each sterol in the plasma and liver of G5G8(-/-) mice (stigmasterol > sitosterol = cholestanol > bassicasterol > campesterol > cholesterol) reflected its relative enrichment in the bile of wild-type mice. These results indicate that 24-alkylated, Delta22, and 5alpha-reduced sterols are preferentially secreted into bile and that preferential biliary secretion of noncholesterol sterols by ABCG5 and ABCG8 prevents the accumulation of these sterols in normal animals. The mRNA levels for 13 enzymes in the cholesterol biosynthetic pathway were reduced in the livers of the G5G8(-/-) mice, despite a 50% reduction in hepatic cholesterol level. Thus, the accumulation of sterols other than cholesterol is sensed by the cholesterol regulatory machinery.  相似文献   

16.
We have developed a highly sensitive and specific method for the analysis of serum sterol profiles. Sterols in 1 mul of dried serum were derivatized into picolinyl esters (3beta-picolinate) and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using the electrospray ionization (ESI) mode. In addition to cholesterol, 19 cholesterol precursors, cholestanol, campesterol, sitosterol, and sitostanol were identified simultaneously. Quantitative analyses for the picolinyl esters of 11 available sterols were performed, and detection limits were found to be less than 1 pg on-column. Reproducibilities and recoveries of 8 noncholesterol sterols were validated according to one-way layout and polynomial equation, respectively. The variances between sample preparations and between measurements by this method were calculated to be 1.6% to 8.2% and 2.5% to 16.5%, respectively. The recovery experiments were performed using 1 mul aliquots of normal human serum spiked with 1 ng to 6 ng of sterols, and recoveries of the sterols ranged from 88.1% to 102.5% with a mean recovery of 98.1%. The present method provides reliable and reproducible results for the identification and quantification of neutral sterols, especially in small volumes of blood samples, which is useful for serological diagnosis of inherited disorders in cholesterol metabolism and for noninvasive evaluation of cholesterol biosynthesis and absorption in humans.  相似文献   

17.
Fecal neutral steroids and bile acids from germfree rats   总被引:3,自引:0,他引:3  
The amount and composition of fecal neutral sterols and bile acids excreted by adult male germfree and conventional rats have been determined. The amounts of neutral sterols excreted were 12.8 (germfree) and 19.5 (conventional) mg/kg of body wt per day. The germfree rats excreted cholesterol and lathosterol (methostenol was not assayed); the conventional rats excreted coprostanol and coprostanone in addition. The amounts of bile acids excreted were 11.3 (germfree) and 21.4 (conventional) mg/kg of body wt per day. The bile acids excreted by the rats were tentatively identified as tauro--muricholate, tauro-alpha-muricholate, and tauro-cholate, besides an unidentified component. The conventional rats excreted the corresponding unconjugated acids as well as many other unconjugated bile acids. No significant correlation was found between the amount of coprosterols and the total amount of neutral sterols excreted by the conventional rats. This suggests that bacterial reduction of cholesterol is not an important mechanism of increasing neutral sterol excretion of conventional rats as compared to germfree rats. Evidence is presented that suggests that this difference in neutral sterol excretion is due to changes in intestinal secretion and sloughing between the two types of animal. The factors reponsible for the differences in bile acid excretion have not been identified.  相似文献   

18.
The effect of microbiological deconjugation of bile acids on total bile acid and neutral sterol fecal excretion by adult male rats has been studied. A screening method utilizing mice allowed selection of a Clostridium perfringens type A strain, which accelerated cholesterol catabolism in mice. When this species of bacteria was associated with germfree rats, the fecal bile acids were excreted as free bile acids (deconjugated), however the quantities of bile acids excreted were not increased compared with those of germfree rats. Conventional rats excrete twice as much bile acids (all deconjugated) as do the germfree and C. perfringens-associated rats. It is, therefore, unlikely that the microbiological deconjugation of bile acids is responsible for the increased fecal excretion of bile acids seen in conventional rats. The C. perfringens-associated rats excreted identical kinds and quantities of fecal neutral sterols as did the germfree rats.  相似文献   

19.
The isolation of pentacyclic triterpenoids from seven species of fresh mangrove leaves using a simple and rapid method is described. The leaves were homogenized using chloroform—methanol and the extract was diluted with water to precipitate out triterpenoids which were separated into neutral and acidic fractions. These were analysed by gas-liquid chromatography as acetyl and trimethylsilyl ether derivatives on a 3% OV-17 column. Sterols were isolated from the chloroform layer by preparative thin layer chromatography and were analysed by gas-liquid chromatography as their trimethylsilyl ether derivatives on a 3% OV-17 column. The triterpenoids found were α-amyrin, β-amyrin, lupeol, oleanolic acid and ursolic acid in most of the samples. Sterols found in all the samples were cholesterol, campesterol, stigmasterol, sitosterol and stigmast-7-en-3β-ol. Retention indices of the triterpenoids and sterols have been determined.  相似文献   

20.
Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 μmol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 μmol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (−4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport.Reverse cholesterol transport (RCT)3 is defined as the flux of excess cholesterol from peripheral tissues toward the liver followed by biliary secretion and subsequent disposal via the feces (1). Accumulation of cholesterol in macrophages in the vessel wall is considered a primary event in the development of atherosclerosis and, therefore, removal of excess cholesterol from these cells is of crucial importance for prevention and/or treatment of atherosclerotic cardiovascular diseases. It is generally accepted that HDL is the obligate transport vehicle in RCT and that plasma HDL levels reflect the capacity to accommodate this flux. In line herewith, HDL-raising therapies are currently considered as a promising strategy for prevention and treatment of atherosclerotic cardiovascular diseases (2). In the “classical” scenario, the liver has a central role in RCT (3). Biliary secretion of free cholesterol, facilitated by the heterodimeric ABC-transporter ABCG5/ABCG8 (4), and hepatic conversion of cholesterol into bile acids followed by fecal excretion are referred to as the main routes for quantitatively important elimination of cholesterol from the body. Fecal excretion of sterols is stimulated upon whole body activation of the liver X receptor (LXR, NR1H2/3), a member of the nuclear receptor family for which oxysterols have been identified as natural ligands (5). LXR regulates expression of several genes involved in RCT and activation of LXR by synthetic agonists leads to elevated plasma HDL-cholesterol levels, increased hepatobiliary cholesterol secretion, reduced fractional intestinal cholesterol absorption and increased fecal sterol loss (6). LXR is thus considered an attractive target for therapeutic strategies aimed at stimulation of RCT, which, however, will require approaches to circumvent potential detrimental consequences of LXR activation such as induction of lipogenesis.Recent studies indicate that the classical concept of RCT may require reconsideration. Studies in apoA-I-deficient mice revealed that the magnitude of the centripetal cholesterol flux from the periphery to the liver is not related to the concentration of HDL-cholesterol or apoA-I in plasma (7). Furthermore, Abca1−/− mice that completely lack plasma HDL show unaffected rates of hepatobiliary cholesterol secretion and fecal sterol loss (8). Additionally, mice lacking both Abcg5 and Abcg8 do not show a reduction in fecal neutral sterol excretion to the extent expected on the basis of their strongly reduced hepatobiliary cholesterol secretion (9). Recent studies by Plösch et al. (6) have revealed that increased fecal neutral sterol loss upon general LXR activation cannot be attributed to the increased hepatobiliary cholesterol secretion only, suggesting a major contribution of the intestine in excretion of cholesterol. This potential role of the intestine in cholesterol removal from the body has been corroborated by Kruit et al. (10), who showed that fecal sterol loss is not affected in Mdr2−/− (Abcb4−/−) mice that have a dramatic reduction in biliary cholesterol secretion (11). Moreover, intravenously administered [3H]cholesterol could be recovered in the neutral sterol fraction of the feces in these mice and fecal excretion of neutral sterols was stimulated upon treatment with an LXR agonist (10). However, the exact quantitative contribution of the direct intestinal pathway under physiological conditions has not directly been determined so far. Very recently, intestinal perfusion studies in mice revealed that, in the presence of mixed micelles as cholesterol acceptors in the intestinal lumen, murine enterocytes indeed have a high capacity to secrete cholesterol via a specific process that is most active in the proximal part of the small intestine (12). In addition, it was shown that direct trans-intestinal cholesterol excretion (TICE) could be stimulated by a high fat diet. The existence of a non-biliary route for fecal neutral sterol excretion is further supported by very recent studies by Brown et al. (13) in mice with targeted deletion of hepatic ACAT2.The present study provides insight into the relative and absolute contributions of several cholesterol fluxes relevant to total fecal sterol loss in mice, making use of a panel of stable isotope tracers. Our results show that TICE is a major route for removal of blood-derived free cholesterol and that pharmacological LXR activation strongly stimulates this arm of the reverse cholesterol transport pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号