首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock proteins (HSP) are a group of highly conserved proteins that regulate protein folding and ameliorate the effects of environmental stress. In the present study, the question of whether or not ascidian oocytes, embryos and larvae constitutively synthesize HSP was studied using HSP 60 and HSP 70 antibodies. Developmental stages obtained from Boltenia villosa, Cnemidocarpa finmarkiensis, Styela montereyensis and Corella willmeriana were examined for HSP using indirect immunocytochemistry. Myoplasm in oocytes and unfertilized eggs reacted with HSP 60 and 70 antibodies. HSP signals dramatically moved into the vegetal egg cytoplasm during ooplasmic segregation and colocalized with the myoplasm. In cleavage-stage embryos, HSP signals were partitioned with the myoplasm into muscle progenitor blastomeres and HSP signals were evident in the tail muscle cells of larvae. Immunoblots of proteins extracted from oocytes, eggs, embryos and larvae indicate that anti-HSP 60 recognizes a single band having an estimated molecular weight of 60 kDa. Egg centrifugation experiments suggest that most of the ascidian myoplasmic HSP are mitochondrial proteins. These results raise an intriguing possibility that mitochondria associated with the myoplasm perform biochemical functions that are unique to the embryonic muscle cell lineage.  相似文献   

2.
Gastrulation in the maximum direct developing ascidian Molgula pacifica is highly modified compared with commonly studied "model" ascidians in that endoderm cells situated in the vegetal pole region do not undergo typical invagination and due to the absence of a typical blastopore the involution of mesoderm cells is highly modified. At the gastrula stage, embryos are comprised of a central cluster of large yolky cells that are surrounded by a single layer of ectoderm cells in which there is only a slight indication of an inward movement of cells at the vegetal pole. As a consequence, these embryos do not form an archenteron. In the present study, ultraviolet (UV) irradiation of fertilized eggs tested the possibility that cortical cytoplasmic factors are required for gastrulation, and blastomere isolation experiments tested the possibility that cell signaling beginning at the two-cell stage may be required for the development of the gastrula. Irradiation of unoriented fertilized eggs with UV light resulted in late cleavage stage embryos that failed to undergo gastrulation. When blastomeres were isolated from two-cell embryos, they developed into late cleavage stage embryos; however, they did not undergo gastrulation and subsequently develop into juveniles. These results suggest that cytoplasmic factors required for gastrulation are localized in the egg cortex, but in contrast to previously studied indirect developers, these factors are not exclusively localized in the vegetal pole region at the first stage of ooplasmic segregation. Furthermore, the inability of embryos derived from blastomeres isolated at the two-cell stage to undergo gastrulation and develop into juveniles suggests that important cell signaling begins as early as the two-cell stage in M. pacifica. These results are discussed in terms of the evolution of maximum direct development in ascidians.  相似文献   

3.
Summary

The mosaic behavior of blastomeres isolated from ascidian embryos has been taken as evidence that localized ooplasmic factors (cytoplasmic determinants) specify tissue precursor cells during embryogenesis. Experiments involving the transfer of egg cytoplasm have revealed the presence and localization of various kinds of cytoplasmic determinants in eggs of Halocynthia roretzi. Three cell fates, epidermis, muscle and endoderm, are fixed by cytoplasmic determinants. The three kinds of tissue determinants move in different directions during ooplasmic segregation. Prior to the onset of the first cleavage the three kinds of determinants reside in egg regions that correspond to the future fate map of the embryo and then they are differentially partitioned into specific blastomeres. In addition to tissue-specific determinants, there is evidence suggesting that ascidian eggs contain localized cytoplasmic factors that are responsible for controlling the cleavage pattern and morphogenetic movements. Transplantation of posterior-vegetal egg cytoplasm to an anterior-vegetal position causes a reversal of the anterior-posterior polarity of the cleavage pattern. Localized cytoplasmic factors in the posterior-vegetal region are involved in the generation of a unique cleavage pattern. When vegetal pole cytoplasm is transplanted to the animal pole or equatorial position of the egg, ectopic gastrulation occurs at the site of transplantation. This finding supports the idea that vegetal pole cytoplasm specifies the site of gastrulation. Recently, we started a cDNA project to analyze maternal mRNAs. An arrayed cDNA library of fertilized eggs of H. roretzi was constructed, and more than 2000 clones have been partially sequenced so far. To estimate the proportion of the maternal mRNAs that are localized in the egg and embryo, 150 randomly selected clones were examined by in situ hybridization. We found eight mRNAs that are localized in the eight-cell embryo, of which three were localized to the myoplasm (a specific region of the egg cytoplasm that is partitioned into muscle-lineage blastomeres) of the egg, and then to the postplasm of cleavage-stage embryos. These results indicate that the proportion of localized messages is much higher than we expected. These localized maternal messages may be involved in the regulation of various developmental processes.  相似文献   

4.
5.
 Cytoplasmic determinants that specify the fate of endoderm, muscle and epidermis cells are known to be localized in specific areas of fertilized eggs of ascidians. The presence of such cytoplasmic determinants in unfertilized eggs was demonstrated in previous studies, but no information has yet been proved about their distribution. To investigate the distribution of cytoplasmic determinants in unfertilized eggs, we devised a method for distinguishing the polarity of unfertilized eggs using vital staining and we performed cytoplasmic-transfer experiments by fusing blastomeres and cytoplasmic fragments from various identified regions of unfertilized eggs. Cytoplasmic fragments, that contained cortical and subcortical material, from five different positions along the animal-vegetal axis were prepared, and they were fused with a4.2 (presumptive-epidermis) or A4.1 (non-epidermis) blastomeres. The ectopic development of endoderm, muscle and epidermis cells that was promoted by the transplanted cytoplasm was assessed by examining the expression of alkaline phosphatase (ALP), myosin and epidermis-specific antigen, respectively. Differentiation of endoderm and muscle was observed at higher frequencies as cytoplasmic fragments closer to the vegetal pole were transplanted. Conversely, formation of epidermis was observed at higher frequencies as cytoplasmic fragments closer to the animal pole were transplanted. The results suggest that, in cortical and subcortical regions of unfertilized ascidian eggs, endoderm and muscle determinants are widely distributed along a gradient, with maximum activity at the vegetal pole, whilst epidermis determinants are also distributed along a gradient but with maximum activity at the animal pole. Recieved: 10 June 1996 / Accepted: 12 September 1996  相似文献   

6.
The egg of the ascidian Ciona savignyi is pinkish red with brownish myoplasm that contains the putative determinants responsible for differentiation of muscle cells. When dechorionated unfertilized eggs were centrifuged at moderate speed, eggs were divided into centripetal, small gray fragments and centrifugal, large red fragments. The former contained the female pronucleus and clear cytoplasm, while most of the latter was filled with yolk granules. An antibody raised against the myoplasm of C. intestinalis eggs extensively stained the cortical region of gray fragments, while the antibody stained only small regions of the red fragments. After insemination, both fragments cleaved and gave rise to partial embryos. When development of muscle and epidermal cells in the partial embryos was examined with specific antibodies, muscle development was conspicuous in gray partial embryos, while epidermal differentiation was extensive in red partial embryos. Furthermore, when expression of markers of differentiation was examined in cleavage-arrested gray and red fragments, the number of arrested gray fragments exhibiting the muscle marker was about three-fold greater than in controls. These results suggest that putative muscle determinants are concentrated into gray fragments.  相似文献   

7.
A technique for fusing an ascidian egg with blastomeres using a chemical fusiogen was established and then used to identify cytoplasmic factors that regulate the process of oocyte maturation in ascidian eggs. Unfertilized eggs fused with fertilized eggs or blastomeres in hypotonic artificial sea water containing 20% polyvinyl alcohol within 10 min. After fusion polar bodies were extruded from the unfertilized portion of the fused eggs. Furrows were formed not only in the fertilized portion but also in the unfertilized portion in the fused eggs. No polar body extrusion and furrow formation occur in either portion of fused unfertilized eggs. These results suggest that fertilized eggs and blastomeres contain a factor that induces oocyte maturation. Polar body extrusion and furrow formation were not suppressed in the fertilized portion of fused eggs, suggesting that unfertilized eggs do not contain a factor that inhibits oocyte maturation.  相似文献   

8.
The myoplasm of ascidian eggs is a localized cytoskeletal domain that is segregated to presumptive larval tail muscle cells during embryonic development. We have identified a cytoskeletal protein recognized by a vertebrate neurofilament monoclonal antibody (NN18) which is concentrated in the myoplasm in eggs and embryos of a variety of ascidian species. The NN18 antigen is localized in the periphery of unfertilized eggs, segregates with the myoplasm after fertilization, and enters the larval tail muscle cells during embryonic development. Western blots of one-dimensional and two-dimensional gels showed that the major component recognized by NN18 antibody is a 58 x 10(3) Mr protein (p58), which exists in at least three different isoforms. The enrichment of p58 in the Triton X-100-insoluble fraction of eggs and its reticular staining pattern in eggs and embryos suggests that it is a cytoskeletal protein. In subsequent experiments, p58 was used as a marker to determine whether changes in the myoplasm occur in eggs of anural ascidian species, i.e. those exhibiting a life cycle lacking tadpole larvae with differentiated muscle cells. Although p58 was localized in the myoplasm in eggs of four urodele ascidian species that develop into swimming tadpole larvae, this protein was distributed uniformly in eggs of three anural ascidian species. The eggs of two of these anural species contained the actin lamina, another component of the myoplasm, whereas the third anural species lacked the actin lamina. There was no detectible localization of p58 after fertilization or segregation into muscle lineage cells during cleavage of anural eggs. NN18 antigen was uniformly distributed in pre-vitellogenic oocytes and then localized in the perinuclear zone during vitellogenesis of urodele and anural ascidians. Subsequently, NN18 antigen was concentrated in the peripheral cytoplasm of post-vitellogenic oocytes and mature eggs of urodele, but not anural, ascidians. It is concluded that the myoplasm of ascidian eggs contains an intermediate filament-like cytoskeletal network which is missing in anural species that have modified or eliminated the tadpole larva.  相似文献   

9.
The ascidian egg contains muscle and endoderm determinants that play critical roles in the specification of muscle and endoderm cells, respectively. Endoderm cells of the ascidian embryo express alkaline phosphatase (AP) as a tissue-specific enzyme. We obtained egg fragments from the unfertilized eggs of Ciona savignyi by means of centrifugal force. The largest fragment (red fragments) contained the egg nucleus while other small fragments (black, clear and brown fragments) were anucleate. When inseminated, only red fragments developed into partial embryos, which showed only epidermis cell differentiation and, very rarely, AP activity. When red fragments were fused with other fragments, only black fragments promoted AP expression, suggesting that endoderm determinants were concentrated in the black fragments. A lower dose (1500 J/m2) of ultraviolet (UV) light did not eliminate the AP-promoting ability of black fragments, while this dose significantly repressed the ability to promote the expression of the muscle-marker. A higher dose (4500 J/m2) of UV light markedly reduced the AP-promoting activity of black fragments. These results suggest that factors for endodermal AP development are inactivated by UV irradiation, but are more resistant than muscle determinants.  相似文献   

10.
Egg cytoplasm containing endoderm determinants was transferred to presumptive-muscle or presumptive-epidermis blastomeres isolated from cleavage-stage embryos of the ascidian Halocynthia roretzi. We investigated three aspects of the expression of endoderm-specific alkaline phosphatase (ALP) activity. First, we examined whether ectopic ALP expression, an indication of ectopic endoderm formation, was promoted in cytoplasm-transferred blastomeres isolated at late-cleavage stage. The results showed that the cell fate was converted by the introduced cytoplasm, even in recipient blastomeres in which the cell fate was already restricted to muscle or epidermis, and in those where expression of the muscle- or epidermis-specific genes was already initiated. Next, we examined the formation of endoderm and other tissue in embryos by double staining for ALP and muscle- or epidermis-specific marker. Regions positive for ALP and positive for muscle or epidermis marker were mutually exclusive. These results suggested that muscle- or epidermis-specific genes that were already expressed in the recipient blastomeres were down-regulated in ectopically forming endoderm cells. This is evidence for nuclear plasticity during ascidian embryogenesis. In the last series of experiments, we investigated the timing of the appearance of ALP activity in cytoplasm-transferred embryos. In the partial embryos that were derived from various combination of recipient blastomeres and donor cytoplasm obtained from various staged eggs and embryos, the timing seemed to coincide with the time that starts when cell fusion for cytoplasmic transfer was done. Therefore, the clock that determines the timing of the initiation of ALP expression is likely to start at the moment of cell fusion. Several possible hypotheses for the timing mechanism are discussed.  相似文献   

11.
The ascidian egg contains cytoplasmic determinants that specify the fate of larval muscle cells. In a previous study, we developed an experimental system to identify the molecular nature of muscle determinants, in which unfertilized Ciona savignyi eggs were fragmented into four pieces by centrifugation. When inseminated, only nucleated fragments (red fragments) develop into partial embryos that only show differentiation of epidermal cells. One type of enucleated fragment (black fragment) has the remarkable ability to promote muscle differentiation when fused with red fragments. In the present study, using this experimental system, we investigated the molecular nature of muscle determinants. UV irradiation of black fragments suppressed the ability to promote expression of the muscle-specific protein, myosin heavy chain. The wavelength of UV light responsible for the inactivation (250–275 nm) suggested that UV-sensitive targets are nucleic acids. Injection of poly(A)+ RNA isolated from an un-irradiated black-fragment-rich fraction into UV-irradiated black fragments partially recovered the ability to promote the expression of myosin heavy chain protein. Poly(A)+ RNA from a red-fragment-rich fraction did not rescue the suppression of UV-irradiated black fragments. These results suggest that maternal mRNAs enriched in black fragments are closely associated with muscle determinants in the ascidian egg.  相似文献   

12.
13.
We counted cell numbers during embryogenesis of the ascidian, Halocynthia roretzi, every hour. Cell numbers were determined by counting the numbers of nuclei in squashed embryos. The cell number of a larva just after hatching was approximately 3000. Our study addresses the question of what factors control the number of rounds of cell division during development. Three kinds of egg fragments were prepared by cutting unfertilized eggs to alter the volume of cytoplasm and the amount of DNA. After the egg fragments were fertilized, the cell numbers were estimated at the hatching stage. The cell numbers of the resulting larvae differed from those of normal larvae. Precursor blastomeres of various tissues were then isolated from normal and manipulated embryos, and cultured as partial embryos. The cell numbers of the resulting partial embryos were counted to estimate the number of cell divisions in each larval tissue. The results suggested that the number of cell divisions is controlled by a distinct mechanism in each tissue. We propose that the number of rounds of cell division during ascidian embryogenesis is controlled by three mechanisms: the first depending on the volume of cytoplasm; the second on the nucleo-cytoplasmic ratio; and the third depending on neither of these parameters. J. Exp. Zool. 284:379-391, 1999.  相似文献   

14.
Localization of actin messenger RNA during early ascidian development   总被引:13,自引:0,他引:13  
The spatial distribution of RNA sequences during early development of the ascidian, Styela plicata, was determined by in situ hybridization with poly(U) and cloned DNA probes. Styela eggs and embryos contain three colored cytoplasmic regions of specific morphogenetic fates, the ectoplasm, endoplasm, and myoplasm. These cytoplasmic regions participate in ooplasmic segregation after fertilization and are distributed to different cell lineages during early embryogenesis. n situ hybridization with poly(U) suggests that poly(A)+RNA is unevenly distributed in eggs and embryos, with about 45% in the ectoplasm, 50% in the endoplasm, and only 5% in the myoplasm. In situ hybridization with a histone DNA probe showed that histone RNA sequences were not localized in eggs or embryos and distributed between the three cytoplasmic regions according to their volumes. In situ hybridization with an actin DNA probe showed actin RNA was localized in the myoplasm and ectoplasm of eggs and embryos with about 45% present in the myoplasm, 40% in the ectoplasm, and only 15% in the endoplasm. These results suggest that a large proportion of the egg actin mRNA is localized in the myoplasm, participates in ooplasmic segregation after fertilization, and is differentially distributed to the mesodermal cell lineages during embryogenesis. Analysis of the translation products of egg mRNA suggests that the localized mRNA codes for a cytoplasmic actin isoform.  相似文献   

15.
The myoplasm of ascidian eggs is a localized cytoplasmic region containing a unique cytoskeletal domain. During ooplasmic segregation, the myoplasm moves first to the vegetal pole and then to the future posterior region of the fertilized egg, where it subsequently enters the muscle cell lineage during cleavage. In the vegetal pole region, the myoplasm defines a developmental center which later controls gastrulation and embryonic axis formation. In the posterior region, the myoplasm defines another developmental center, which specifies muscle cell development. Evidence is described suggesting that the integrity of the myoplasmic cytoskeletal domain is required for normal embryonic functions of the myoplasm.  相似文献   

16.
In solitary ascidians the fate of endoderm is determined at a very early stage of development and depends on cytoplasmic factors whose nature has not been determined. We have isolated a member of the NK-2 gene family, Cititf1, from the ascidian Ciona intestinalis, showing high sequence homology to mammalian TITF1. The Cititf1 gene was expressed in all endodermal precursors at the pregastrula and gastrula stages, and is thus the first specific regulatory endodermal marker to be isolated from an ascidian. Cititf1 expression was downregulated at the end of gastrulation to reappear at middle tailbud and larval stages in the most anterior and ventral parts of head endoderm, regions which give rise, after metamorphosis, to the adult endostyle, where Cititf1 mRNA was still present. Microinjection of Cititf1 mRNA into fertilized eggs resulted in tadpole larvae with abnormalities in head-trunk development consequent to the formation of excess endoderm, perhaps due to recruitment of notochord precursors to an endodermal fate. These data suggest that Cititf1 plays an important role in normal endoderm differentiation during ascidian embryogenesis.  相似文献   

17.
Many eggs undergo reorganizations that localize determinants specifying the developmental axes and the differentiation of various cell types. In ascidians, fertilization triggers spectacular reorganizations that result in the formation and localization of distinct cytoplasmic domains that are inherited by early blastomeres that develop autonomously. By applying various imaging techniques to the transparent eggs of Phallusia mammillata, we now define 9 events and phases in the reorganization of the surface, cortex and the cytoplasm between fertilization and first cleavage. We show that two of the domains that preexist in the egg (the ER-rich cortical domain and the mitochondria-rich subcortical myoplasm) are localized successively by a microfilament-driven cortical contraction, a microtubule-driven migration and rotation of the sperm aster with respect to the cortex, and finally, a novel microfilament-dependant relaxation of the vegetal cortex. The phases of reorganization we have observed can best be explained in terms of cell cycle-regulated phases of coupling, uncoupling and recoupling of the motions of cortical and subcortical layers (ER-rich cortical domain and mitochondria-rich domain) with respect to the surface of the zygote. At the end of the meiotic cell cycle we can distinguish up to 5 cortical and cytoplasmic domains (including two novel ones; the vegetal body and a yolk-rich domain) layered against the vegetal cortex. We have also analyzed how the myoplasm is partitioned into distinct blastomeres at the 32-cell stage and the effects on development of the ablation of precisely located small fragments. On the basis of our observations and of the ablation/ transplantation experiments done in the zygotes of Phallusia and several other ascidians, we suggest that the determinants for unequal cleavage, gastrulation and for the differentiation of muscle and endoderm cells may reside in 4 distinct cortical and cytoplasmic domains localized in the egg between fertilization and cleavage.  相似文献   

18.
Anural ascidians do not develop into a conventional tailed larva with differentiated muscle cells, however, embryos of some anural ascidian species retain the ability to express acetylcholinesterase (AChE) in a vestigial muscle cell lineage. This study examines the number of AChE-positive cells that develop in the anural ascidian Molgula occulta relative to that in the closely related urodele (tailed) species, Molgula oculata. Histochemical assays showed that M. oculata embryos develop 36 to 38 AChE-positive cells, consistent with the number of tail muscle cells expressed in other urodele ascidians. In contrast, M. occulta embryos develop a mean of only 20 AChE-positive cells in their vestigial muscle lineage. Cleavage-arrested embryos of the anural species express AChE only in B-line blastomeres, showing that the vestigial muscle lineage cells are derived from the primary muscle lineage. Less than the expected number of AChE-positive B-line cells develop in cleavage-arrested anural embryos, however, implying that the allocation of primary muscle lineage cells is decreased. Eggs of the anural species can be fertilized with sperm of the urodele species resulting in the development of some larvae that contain a short tail and/or a brain melanocyte, specific features of urodele larvae. The typical urodele number of AChE-positive cells is restored in some of these hybrid embryos. Both primary and secondary muscle lineages are restored because cleavage-arrested hybrid embryos develop more AChE-positive cells in the B-line blastomeres and supernumerary AChE-positive cells in the A-line blastomeres. Hybrid embryos that develop the urodele complement of AChE-positive cells also form a tail and/or a brain melanocyte showing that restoration of muscle lineage cells is coupled to the development of other urodele features. AChE expression occurred in anural embryos with disorganized or dissociated blastomeres, indicating that AChE expression is determined autonomously. It is concluded that an evolutionary change in the allocation of larval muscle lineage cells occurs during development of the anural ascidian M. occulta which can be restored by interspecific hybridization with the urodele ascidian M. oculata.  相似文献   

19.
Specification of germ layers is a crucial event in early embryogenesis. In embryos of the ascidian, Halocynthia roretzi, endoderm cells originate from two distinct lineages in the vegetal hemisphere. Cell dissociation experiments suggest that cell interactions are required for posterior endoderm formation, which has hitherto been thought to be solely regulated by localized egg cytoplasmic factors. Without cell interaction, every descendant of posterior-vegetal blastomeres, including endoderm precursors, assumed muscle fate. Cell interactions are required for suppression of muscle fate and thereby promote endoderm differentiation in the posterior endoderm precursors. The cell interactions take place at the 16- to 32-cell stage. Inhibition of cell signaling by FGF receptor and MEK inhibitor also supported the requirement of cell interactions. Consistently, FGF was a potent signaling molecule, whose signaling is transduced by MEK-MAPK. By contrast, such cell interactions are not required for formation of the anterior endoderm. Our results suggest that another redundant signaling molecule is also involved in the posterior endoderm formation, which is likely to be mediated by BMP. Suppression of the function of macho-1, a muscle determinant in ascidian eggs, by antisense oligonucleotide was enough to allow autonomous endoderm specification. Therefore, the cell interactions induce endoderm formation by suppressing the function of macho-1, which is to promote muscle fate. These findings suggest the presence of novel mechanisms that suppress functions of inappropriately distributed maternal determinants via cell interactions after embryogenesis starts. Such cell interactions would restrict the regions where maternal determinants work, and play a key role in marking precise boundaries between precursor cells of different tissue types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号