首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Sa modification with NEM, which activates Mg2+-ATPase through an enhancement of the association of actin and myosin, was investigated on the superprecipitation, clearing and Mg2+-ITPase of myosin B with reference to the effect of S1-blocking. 1. Superprecipitation induced by ATP was markedly enhanced by Sa-blocking even at high concentrations of Mg2+ and substrate; this may be due to an increase in the affinity of myosin and actin on blocking Sa. 2. Nevertheless, neither ITP-induced superprecipitation nor Mg2+-ITPase was affected by Sa modification. 3. Blocking of S1 brought about the inhibition of ATP- and ITP-induced superprecipitation and Mg2+-ITPase activity, suggesting that S1-blocking decreases the affinity of myosin and actin. 4. Sa-blocked myosin B showed greater resistance to clearing by ATP, especially in the presence of Ca2+ ions, whereas in the clearing response of actomyosin gel to PPi no difference between Sa-blocked and unmodified myosins B was observed. On the other hand, the clearing response of myosin B became more sensitive to both ATP and PPi on blocking S1. Based on the above results and preliminary data suggesting that Sa is located in LMM, the interaction of myosin filaments and actin filaments under physiological conditions is discussed.  相似文献   

2.
As previously reported when a specific thiol group, S2, of myosin reacts with N-ethylmaleimide (NEM), its Ca2+-ATPase activity is decreased. Therefore, the reactivity of S2 can be estimated by measuring the decrement of the enzymatic activity. Using the change in the reactivity as a structural probe, we investigated whether F-actin affects the conformation around the region containing S2 under physiological conditions (at neutral pH and low ionic strength). 1. Experiments were carried out with heavy meromyosin (HMM), S1 of which had heen blocked with NEM, to observe the reactivity of S2 alone. In the experiments done in the presence of F-actin, the Ca2+-ATPase activity was measured using the heavy meromyosin fraction after actin had been removed by centrifugation and gel filtration. 2. ATP and other nucleotides activated the reactivity of S2 in the presence of Mg2+. On the other hand, F-actin markedly activated the reactivity of S2 which had been increased by ATP, but not by the other nucleotides. 3. The above cooperative action of F-actin with ATP was not observed in the presence of Ca2+ instead of Mg2+, or above 0.2 M KCl. These results suggest that the S2 region of the myosin molecule is a key region in the molecular interaction of the actin myosin-ATP system under physiological conditions.  相似文献   

3.
The structure of a tryptic peptide containing one specific sulfhydryl group (Sa), which is responsible for the activation of Mg2+-ATPase of myosin B and is present in the light meromyosin region of the myosin molecule, was studied. The amino acid sequence was deduced to be Thr (or Ser)-Asn-Ala-Ala-Cys-Ala-Ala-Leu-Asp-Lys-Lys. In addition, a space-filling model around Sa was built up by comparing Sa-peptide with the amino acid sequence around Cys 190 of alpha-tropomyosin, and the high reactivity of Sa with N-ethylmaleimide is considered based on this model.  相似文献   

4.
A contractile protein closely resembling natural actomyosin (myosin B) of rabbit skeletal muscle was extracted from plasmodia of the slime mold, Physarum polycephalum, by protecting the SH-groups with beta-mercaptoethanol or dithiothreitol. Superprecipitation of the protein induced by Mg2+-ATP at low ionic strength was observed only in the presence of very low concentrations of free Ca2+ ions, and the Mg2+-ATPase [EC 3.6.1.3] reaction was activated 2- to 6-fold by 1 muM of free Ca2+ ions. Crude myosin and actin fractions were separated by centrifuging plasmodium myosin B in the presence of Mg2+-PPi at high ionic strength. The crude myosin showed both EDTA- and Ca2+-activated ATPase activities. The Mg2+-ATPase activity of crude myosin from plasmodia was markedly activated by the addition of pure F-actin from rabbit skeletal muscle. Addition of the F-action-regulatory protein complex prepared from rabbit skeletal muscle as well as the actin fraction of plasmodium caused the same degree of activation as the addition of pure F-actin only in the presence of very low concentrations of Ca2+ ion  相似文献   

5.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

6.
A myosin B-like protein was extracted from the alga Nitella flexilis. SDS-polyacrylamide gel electrophoresis revealed the presence of myosin heavy chain and actin as the main components. At high ionic strength, its ATPase [EC 3.6.1.3] reaction was activated by EDTA or Ca2+ and inhibited by Mg2+. At low ionic strength, superprecipitation was induced by the addition of ATP. Myosin was purified from Nitella myosin B. The molecular weight of the heavy chain of Nitella myosin, estimated by SDS-gel electrophoresis, was slightly higher than that of skeletal muscle myosin. At low ionic strength, Nitella myosin aggregated to form bipolar filaments about 0.2 micron long. At high ionic strength, its ATPase reaction was activated by EDTA or Ca2+, and inhibited by Mg2+. The Mg2+-ATPase reaction of Nitella myosin was activated by skeletal muscle F-actin.  相似文献   

7.
Interaction of isolated bacterial flagellum filaments (BFF) and intact flagella from E. coli MS 1350 and B. brevis G.-B.p+ with rabbit skeletal myosin was studied. BFF were shown to coprecipitate with myosin (but not with isolated myosin rod) at low ionic strength, that is, under conditions of myosin aggregation. The data of electron microscopy indicate that filaments of intact bacterial flagella interact with isolated myosin heads (myosin subfragment 1, S1), and this interaction is fully prevented by addition of Mg2+ -ATP. Addition of BFF inhibited both K+ -EDTA- and Ca2+ -ATPase activity of skeletal muscle myosin, but had no effect on its Mg2+ -ATPase activity. Monomeric flagellin did not coprecipitate with myosin and had no effect on its ATPase activities. BFF were shown to compete with F-actin in myosin binding. It is concluded that BFF interact with myosin heads and affect their ATPase activity. Thus, BFF composed of a single protein flagellin are in many respects similar to actin filaments. Common origin of actin and flagellin may be a reason for this similarity.  相似文献   

8.
Calcium ions produce a 3-4-fold stimulation of the actin-activated ATPase activities of phosphorylated myosin from bovine pulmonary artery or chicken gizzard at 37 degrees C and at physiological ionic strengths, 0.12-0.16 M. Actins from either chicken gizzard or rabbit skeletal muscle stimulate the activity of phosphorylated myosin in a Ca2+-dependent manner, indicating that the Ca2+ sensitivity involves myosin or a protein associated with it. Partial loss of Ca2+ sensitivity upon treatment of phosphorylated gizzard myosin with low concentrations of chymotrypsin and the lack of any change on similar treatment of actin supports the above conclusion. Although both actins enhance ATPase activity, activation by gizzard actin exhibits Ca2+ dependence at higher temperatures or lower ionic strengths than does activation by skeletal muscle actin. The Ca2+ dependence of the activity of phosphorylated heavy meromyosin is about half that of myosin and is affected differently by temperature, ionic strength and Mg2+, being independent of temperature and optimal at lower concentrations of NaCl. Raising the concentration of Mg2+ above 2-3 mM inhibits the activity of heavy meromyosin but stimulates that of myosin, indicating that Mg2+ and Ca2+ activate myosin at different binding sites.  相似文献   

9.
The interaction of isolated flagellar filaments of Bacillus brevis var. G.-B. P+ with skeletal muscle myosin has been investigated. Bacterial flagellar filaments co-precipitate with myosin at low ionic strength (at the conditions of myosin aggregation). Addition of bacterial flagellar filaments to myosin led to inhibition of its K+-EDTA- and Ca2+-ATPase activity, but had no influence on Mg2+-ATPase. Monomeric protein of bacterial flagella filaments (flagellin) did not co-precipitate with myosin and had no influence on its ATPase activity. The flagella filaments did not co-precipitate with myosin in the presence of F-actin if it was mixed with myosin before the filaments. If the flagella filaments were added to myosin solution before the addition of F-actin the amount of filaments and actin in myosin precipitate were comparable. In this case the presence of flagella filaments decreased activation of myosin Mg2+-ATPase by actin to 25-30%. Thus the bacterial flagellar filaments are able to interact with myosin and modify its ATPase activity. Probably, these properties of filaments are caused by resemblance of flagellin and actin. For instance, the unique origin of these proteins may be the reason of such resemblance.  相似文献   

10.
The flexibility of the tertiary structure around the active site of myosin ATPase [EC 3.6.1.3] was studied using the reactivity of two specific thiol groups, S1 and S2, as a structural probe. The following four maleimide derivatives were used as thiol-directed reagents: N-ethylmaleimide (NEM), N-(4-methoxy-2-benzimidazolyl methyl) maleimide (MBM), N-(p-(2-benzimidazolyl)phenyl)maleimide (BIPM) and N-(4-dimethyl-amino-3,5-dinitrophenyl)maleimide (DDPM). 1. All the maleimide derivatives used activated the Ca2+-ATPase activity and inhibited the EDTA-ATPase activity, like NEM, indicating that they modified S1. The rate of modification of S1 by NEM and BIPM increased with increasing pH, while that by DDPM decreased. BIPM simultaneously modified S1 and S2. 2. S1 showed much higher reactivity toward the maleimides, except for BIPM, than did N-acetylcysteine (N-Ac-Cys) a low molecular-weight model compound. The extremely small pKa value of S1, 6.28, accounted for this high reactivity. In addition, the ATP-induced increase in its reactivity inducated that S1 was in a buried state. Kinetic analysis showed that the teritiary structure around S1 at alkaline pH differed from that at acidic pH. 3. The apparent rate constant of S2-modification with NEM was approximately one seven-hundredth and one four-hundredth of those of S1 and N-Ac-Cys, respectively. Fluorimetric studies using BIPM revealed that S2 in the buried state was exposed upon adding ATP; this was compensated by the burying of some other thiol group(s) (Sp). Non-linearity of the Arrhenius plots of the reaction rate of S2 suggested that the S2 region of myosin had different conformations at high and low temperatures, the transition temperature being 10--15degrees. This non-linearity completely disappeared in the presence of Mg2+-ATP. On the other hand, Arrhenius plots for the thiols reactive to BIPM did not show non-linearity in the presence or absence of ATP.  相似文献   

11.
R J Heaslip  S Chacko 《Biochemistry》1985,24(11):2731-2736
There are conflicting reports on the effect of Ca2+ on actin activation of myosin adenosine-triphosphatase (ATPase) once the light chain is fully phosphorylated by a calcium calmodulin dependent kinase. Using thiophosphorylated gizzard myosin, Sherry et al. [Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., & Hartshorne, D. J. (1978) Biochemistry 17, 4417-4418] observed that the actin activation of ATPase was not inhibited by the removal of Ca2+. Hence, it was suggested that the regulation of actomyosin ATPase activity of gizzard myosin by calcium occurs only via phosphorylation. In the present study, phosphorylated and thiophosphorylated myosins were prepared free of kinase and phosphatase activity; hence, the ATPase activity could be measured at various concentrations of Ca2+ and Mg2+ without affecting the level of phosphorylation. The ATPase activity of myosin was activated either by skeletal muscle or by gizzard actin at various concentrations of Mg2+ and either at pCa 5 or at pCa 8. The activation was sensitive to Ca2+ at low Mg2+ concentrations with both actins. Tropomyosin potentiated the actin-activated ATPase activity at all Mg2+ and Ca2+ concentrations. The calcium sensitivity of phosphorylated and thiophosphorylated myosin reconstituted with actin and tropomyosin was most pronounced at a free Mg2+ concentration of about 3 mM. The binding of 125I-tropomyosin to actin showed that the calcium sensitivity of ATPase observed at low Mg2+ concentration is not due to a calcium-mediated binding of tropomyosin to F-actin. The actin activation of both myosins was insensitive to Ca2+ when the Mg2+ concentration was increased above 5 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
S100C (S100A11, calgizzarin) inhibits the actin-activated myosin Mg(2+)-ATPase activity of smooth muscle in a dose-dependent manner: its half-maximal effect occurs at a S100C/actin molar ratio of 0.05 and its maximal effect occurs at a ratio of 0.20. Furthermore, S100C was found to bind to actin with a stoichiometry of 1:6-7 in the presence of Ca(2+), with an affinity of 1 x 10(-6) M determined by cosedimentation assays. Other Ca(2+)-binding proteins such as S100A1, S100A2, S100B, and calmodulin did not inhibit actin-activated myosin Mg(2+)-ATPase activity. Calmodulin, S100A1, and S100B reversed the inhibitory effect of calponin in a Ca(2+)-dependent manner, S100A2 had no effect, and S100C had additional inhibitory effects. The results suggest that S100C might be involved in the regulation of actin-activated myosin Mg(2+)-ATPase activity through its Ca(2+)-dependent interaction with actin filaments.  相似文献   

13.
Enzymatic properties of the ATPase of the plasma membrane and cytoplasmic myosin B from guinea-pig polymorphonuclear neutrophils were compared. In the plasma membrane, Mg2+- and Ca2+-activated ATPases showed the same dependence pattern on KCl concentration and pH, i.e., both ATPases increased with decreasing KCl concentration and with rising pH until pH 9.0. The maximum activation of Mg2+-ATPase was observed at 1 . 10(-3) M Mg2+. On the other hand, EDTA-activated ATPase activity was so low that no clear dependence curve was obtained. In myosin B, Mg2+-ATPase activity was below one-tenth that of the plasma membrane ATPase with the maximum activation at 1 . 10(-2) M Mg2+ and pH 9.0 EDTA- and Ca2+-activated ATPase exhibited almost the same activity and the same KCl-dependence curve, i.e., both ATPases increased and increasing KCl concentration. With regard to pH-dependence, Ca2+-ATPase showed a U-shaped curve with the minimum at pH 7.0, wherease EDTA-activated ATPase indicated a bell-shaped curve with the maximum at pH 9.0. Based on the findings that the EDTA-activated ATPase activity was hardly detected in the plasma membrane but high in myosin B, the distribution of ATPase activity on subcellular fractions was studied and the results obtained that the myosin-ATPase activity could be directly measured using the polymorphonuclear neutrophil extract if the EDTA-activated ATPase activity was used as an enzymatic marker for myosin.  相似文献   

14.
The influence of Ca2+ on the enzymatic and physical properties of smooth muscle myosin was studied. The actin-activated ATPase activity of phosphorylated gizzard myosin and heavy meromyosin is higher in the presence of Ca2+ than in its absence, but this effect is found only at lower MgCl2 concentrations. As the MgCl2 concentration is increased, Ca2+ sensitivity is decreased. The concentration of Ca2+ necessary to activate ATPase activity is higher than that required to saturate calmodulin. The similarity of the pCa dependence of ATPase activity and of Ca2+ binding to myosin and the competition by Mg2+ indicate that these effects involved the Ca2+-Mg2+ binding sites of gizzard myosin. For the actin dependence of ATPase activity of phosphorylated myosin at low concentrations of MgCl2, both Vmax and Ka are influenced by Ca2+. The formation of small polymers by phosphorylated myosin in the presence of Ca2+ could account for the alteration in the affinity for actin. For the actin dependence of phosphorylated heavy meromyosin at low MgCl2 concentrations, Ca2+ induces only an increase in Vmax. To detect alterations in physical properties, two techniques were used: viscosity and limited papain hydrolysis. For dephosphorylated myosin, 6 S or 10 S, Ca2+-dependent effects are not detected using either technique. However, for phosphorylated myosin the decrease in viscosity corresponding to the 6 S to 10 S transition is shifted to lower KCl concentrations by the presence of Ca2+. In addition, a Ca2+ dependence of proteolysis rates is observed with phosphorylated myosin but only at low ionic strength, i.e. under conditions where myosin assumes the folded conformation.  相似文献   

15.
The actin-activated Mg2+-ATPase of myosin II from Acanthamoeba castellanii is regulated by phosphorylation of 3 serine residues at the tip of the tail of each of its two heavy chains; only dephosphorylated myosin II is active, whereas the phosphorylated and dephosphorylated forms have identical Ca2+-ATPase activities and Mg2+-ATPase activities in the absence of F-actin. We have now chemically modified phosphorylated and dephosphorylated myosin II with N-ethylmaleimide (NEM). The modification occurred principally at a single site within the NH2-terminal 73,000 Da of the globular head of the heavy chain. NEM-myosin II bound to F-actin and formed filaments normally, but the Ca2+- and Mg2+-ATPase activities of phosphorylated and dephosphorylated myosin II and the actin-activated Mg2+-ATPase activity of NEM-dephosphorylated myosin II were inhibited. Only filamentous myosin II has actin-activated Mg2+-ATPase activity. Native phosphorylated myosin II acquired actin-activated Mg2+-ATPase activity when it was co-polymerized with NEM-inactivated dephosphorylated myosin II, and the increase in its activity was cooperatively dependent on the fraction of NEM-dephosphorylated myosin II in the filaments. From this result, we conclude that the specific activity of each molecule within a filament is independent of its own state of phosphorylation, but is highly cooperatively dependent upon the state of phosphorylation of the filament as a whole. This enables the actin-activated Mg2+-ATPase activity of myosin II filaments to respond rapidly and extensively to small changes in the level of their phosphorylation.  相似文献   

16.
Approximately 8-10 mg of highly actin-activatable, CA2+-sensitive Acanthamoeba myosin II can be isolated in greater than 98% purity from 100 g of amoeba by the new procedure described in detail in this paper. The enzyme isolated by this procedure can be activated by actin because its heavy chains are not fully phosphorylated (Collins, J. H., and Korn, E. D. (1980) J. Biol Chem. 255, 8011-8014). We now show that Acanthamoeba myosin II Mg2+-ATPase activity is more highly activated by Acanthamoeba actin than by muscle actin. Also, actomyosin II ATPase is inactive at concentrations of free Mg2+ lower than about 3 mM and fully active at Mg2+ concentrations greater than 4 mM. Actomyosin II Mg2+-ATPase activity is stimulated by micromolar Ca2+ when assayed over the narrow range of about 3-4 mM Mg2+ but is not affected by Ca2+ at either lower or higher concentrations of Mg2+. The specific activity of te actomyosin II Mg2+-ATPase also increases with increasing concentrations of myosin II when the free Mg2+ concentration is in the range of 3-4 mM but is independent of the myosin II concentration at lower or higher concentrations of Mg2+ . This marked effect of the Mg2+ concentration on the Ca2+-sensitivity and myosin concentration-dependence of th specific activity of actomyosin II ATPase activity does not seem to be related to the formation of myosin filaments, and to be related to the formation of myosin filaments, and myosin II is insoluble only at high concentrations of free Mg2+ (6-7 mM) were neither of these effects is observed. Also, the Mg2+ requirements for actomyosin II ATPase activity and myosin II insolubility can be differentially modified by EDTA and sucrose.  相似文献   

17.
We have purified a cofactor protein previously shown (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697) to be required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. The purified cofactor protein is a novel myosin kinase that phosphorylates the single heavy chain, but neither of the two light chains, of Acanthamoeba myosin I. Phosphorylation of Acanthamoeba myosin I by the purified cofactor protein requires ATP and Mg2+ but is Ca2+-independent. The Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I is highly activated by F-actin in the absence of cofactor protein. Actin-activated Mg2+-ATPase activity is lost when phosphorylated Acanthamoeba myosin I is dephosphorylated by platelet phosphatase. Phosphorylation and dephosphorylation have no effect on the (K+,EDTA)-ATPase and Ca2+-ATPase activities of Acanthamoeba myosin I. These results show that cofactor protein is an Acanthamoeba myosin I heavy chain kinase and that phosphorylation of the heavy chain of this myosin is required for actin activation of its Mg2+-ATPase activity.  相似文献   

18.
Ca2+ and tropomyosin are required for activation of ATPase activity of phosphorylated gizzard myosin by gizzard actin at less than 1 mM Mg2+, relatively low Ca2+ concentrations (1 microM), producing half-maximal activation. At higher concentrations, Mg2+ will replace Ca2+, 4 mM Mg2+ increasing activity to the same extent as does Ca2+ and abolishing the Ca2+ dependence. Above about 1 mM Mg2+, tropomyosin is no longer required for activation by actin, activity being dependent on Ca2+ between 1 and 4 mM Mg2+, but independent of [Ca2+] above 4 mM Mg2+. Phosphorylation of the 20,000-Da light chain of gizzard myosin is required for activation of ATPase activity by actin from chicken gizzard or rabbit skeletal muscle at all concentrations of Mg2+ employed. The effect of adding or removing Ca2+ is fully reversible and cannot be attributed either to irreversible inactivation of actin or myosin or to dephosphorylation. After preincubating in the absence of Ca2+, activity is restored either by adding micromolar concentrations of this cation or by raising the concentration of Mg2+ to 8 mM. Similarly, the inhibition found in the absence of tropomyosin is fully reversed by subsequent addition of this protein. Replacing gizzard actin with skeletal actin alters the pattern of activation by Ca2+ at concentrations of Mg2+ less than 1 mM. Full activation is obtained with or without Ca2+ in the presence of tropomyosin, while in its absence Ca2+ is required but produces only partial activation. Without tropomyosin, the range of Mg2+ concentrations over which activity is Ca2+-dependent is restricted to lower values with skeletal than with gizzard actin. The activity of skeletal muscle myosin is activated by the gizzard actin-tropomyosin complex without Ca2+, although Ca2+ slightly increases activity. The Ca2+ sensitivity of reconstituted gizzard actomyosin is partially retained by hybrid actomyosin containing gizzard myosin and skeletal actin, but less Ca2+ dependence is retained in the hybrid containing skeletal myosin and gizzard actin.  相似文献   

19.
Monoclonal antibodies against gizzard smooth muscle myosin were generated and characterized. One of these antibodies, designated MM-2, recognized the 17-kDa light chain and modulated the ATPase activities and hydrodynamic properties of smooth muscle myosin. Rotary shadowing electron microscopy showed that MM-2 binds 51 (+/- 25) A from the head-rod junction. The depression of Ca2+- and Mg2+-ATPase activities of myosin and Ca2+-ATPase activity of heavy meromyosin at low KCl concentration were abolished by MM-2. Viscosity measurement indicated that MM-2 inhibits the transition of 6 S myosin to 10 S myosin. While the rate of the production of subfragment-1 by papain proteolysis of 6 S myosin was inhibited by MM-2, the rate of proteolysis of the heavy chain of 10 S myosin was enhanced by MM-2 and reached the same rate as that of 6 S myosin plus MM-2. These results suggest that MM-2 inhibits the formation of 10 S myosin by binding to the 17-kDa light chain which is localized at the head-neck region of the myosin molecule. MM-2 increased the Vmax of actin-activated Mg2+-ATPase activities of both dephosphorylated myosin and dephosphorylated heavy meromyosin about 10- and 20-fold, respectively. MM-2 also activated the actin-activated Mg2+-ATPase activity of phosphorylated myosin at a low MgCl2 concentration and thus abolished the Mg2+-dependence of acto phosphorylated myosin ATPase activity. These results suggest that MM-2 inhibits the formation of 10 S myosin, and this results in the activation of actin-activated Mg2+-ATPase activity even in the absence of phosphorylation.  相似文献   

20.
Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号